CMB polarization observations with the POLAR and COMPASS experiments

Christopher O'Dell

Observational Cosmology Lab University of Wisconsin-Madison

http://cmb.physics.wisc.edu

Josh Gundersen, 2001

No Reionization.

4 deg. beam, 2770 sq.deg. polar cap

Reionization at z ~ 30

4 deg. beam, 2770 sq.deg. polar cap

Zaldarriaga, 2001

Polarization Observations of Large Angular Regions (POLAR)

A. de Oliveira-Costa (UPenn)

J. Gundersen (Miami)

B. Keating (Caltech)

S. Klawikowski (UW-Madison)

C. O'Dell (UW-Madison)

L. Piccirillo (Cardiff)

N. Stebor (UW-Madison)

D. Swetz (UW-Madison)

M. Tegmark (UPenn)

P. Timbie (UW-Madison)

The Spinning Correlation Polarimeter

POLAR Main Features

- Clean, simple design: no lenses or mirrors no magnetic or moving parts (excepting overall rotation)
- Corrugated conical feed horn achieves 7° beam with very low sidelobes.
- HEMT amplifiers (25 K noise temperature, NET ~ 800 mK sec^{-1/2})
- Commercial Cryocooler (no liquid cryogens).
- Frequency bands: 26-36 GHz, 3 sub-bands.

POLAR Site: Pine Bluff, WI

POLAR Scan Strategy

Q and U at ~ 20 pixels on the sky, on a 7° ring at declination 43°

Polarized Foregrounds Power Spectra

Josh Gundersen, 1999

Calibration

- Typically calibrate with <u>wire grid</u>, giving a signal = $T_{hot} T_{cold} \sim 250$ K (90% pol)
- We needed a much smaller signal (both in power and fractional polarization).

Calibration

- Typically calibrate with <u>wire grid</u>, giving a signal = $T_{hot} T_{cold} \sim 250 \text{ K} (90\% \text{ pol})$
- We needed a much smaller signal (both in power and fractional polarization).
- Solution: Replace Grid with Thin Dielectric Sheet, calculate reflection properties using simple Fresnel equations.
- Calibration Signal ~ 12 K (5% pol)

O'Dell, Swetz, & Timbie, accepted in IEEE Trans. Mic. Th. Tech., 2002

Stability and Sensitivity

Q and **U** Time Stream for Entire Season

Offset Removal

- Certain matrix operations can remove sensitivity to specific "modes" in a map.
- There exist several formalisms for removing unwanted modes.
- We apply this formalism to each channel and "submap" in our cleaned data set.
- Then combine these "de-offsetted" submaps into final channel maps.

For Each Submap/Channel:

Simply add *Constraint Matrix* to Σ :

$$\Sigma \xrightarrow{s \to \infty} \Sigma + s^2 \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

(simple offset removal)

Bond, Jaffe, Knox 1998 Tegmark, 1998

Final Combined Q, U Maps

Flat Band-Power Model :

E, B Spectra have constant power at all scales, characterized by variances (T_E^2, T_B^2)

20

Cosmic Microwave Polarization at Small Scales (COMPASS)

Rome III
UCSB
U. Miami
CalTech
UW
UC-Davis
UCSB
UCSB
UW
UC-Davis
Cardiff
UCSB
UW
UW

COMPASS Facts

- Same radiometer as POLAR (26-36 GHz)
- 2.6 meter on-axis reflector, 20' beam
- Scanned 1° and 1.6° dia disk at NCP.
- ~ 30 pixels (20' ea) at 1.6° scan.
- Season 2001 ~180 usable hours (U). Season 2002: currently observing Q.
- Calibration on Tau A (6.6% pol'd)
- Effelsberg 100m companion survey at 32 GHz

Polarized Calibration on the Tau A radio source:

COMPASS Current Status

- Pointing is known with good accuracy, ± 4.3 ' Az, ± 1.6 ' El.
- Noise is well behaved, with N.E.T. ~ 600 $\mu K \cdot sec^{1/2}$
- Analysis of 2001 data (U) nearing completion. Jack-knife tests show map consistency, calibration well-understood. Addition of 2002 data (Q) will help nail down systematics, foregrounds, etc.
- Addition of 90 GHz (W-band) system will allow us to probe different frequency as well as smaller angular scales (7' beam).
- Proposal in for HEMT array with ~ 20 pixels, will drastically increase sensitivity.