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�� Errors and Uncertainty Estimation

The estimation of the FIRAS errors and uncertainties was a major part of the FIRAS data

reduction� calibration and destriping� This chapter is an attempt to distill the output of

that e�ort into a concise yet complete description of what is known about the FIRAS

errors and uncertainties�

Uncertainties in the FIRAS data come from many di�erent sources and manifest

themselves in many di�erent ways� A full covariance matrix is ��	 � �	�
� ��	 � �	�

which is too large to be convenient� Fortunately many of the uncertainties are quite well

described by a few dominant terms that show the source of the uncertainty�

We concentrate on the HIGH� LOWF and HRES data sets as these are the best� The

individual channels and scan modes have many of the same uncertainty estimates but

post�destriper data sets have lower systematic errors�

������ Sensitivity

The FIRAS sensitivity is characterized by the C and D vectors� which are estimates for the

random errors� Over most of the sky and most of the frequency range there is a positive

signal� However� there are systematic errors of several types� The di�erences are

important� as some of the systematic errors can be reduced by averaging in some ways but

not in others� The uncertainties are both frequency and position dependent� The

systematic uncertainties are frequency and position dependent in di�erent ways�

������ Formal Calibration Uncertainty

In the calibration program �Section 
 and Appendix C� the derivatives of the results with

respect to the calibration parameters are calculated� Although the derivatives are expressly

calculated for the calibration data the same derivatives can be used for the sky data to

propagate the uncertainties of the sky data and the calibration model to the calibrated sky�

For convenience the derivatives and the propagation are divided into groups� the detector

measurements� the calibration emissivities� the bolometer model parameters� the

temperature measurements of all but the XCAL� and the temperature measurement of the

XCAL� In earlier discussions �Fixsen et al� ����b�� this covariance matrix was expressed�

V � D � P�EP� � JCJ � PUP � PTP ����
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D is due to random uncertainties in the readings on the detectors� P�EP� is due to

uncertainties in the emissivities derived in the calibration� JCJ is due to uncertainties in

the other parameters derived from the calibration� PUP is due to random errors in reading

the thermometers while observing the sky� PTP is due to uncertainty in the absolute

temperature scale of the external calibrator�

The description is complicated by the destriping process� but it is still useful to follow

these terms� At the end of this chapter we add sections on tests for other errors and a

description of how these uncertainty estimates can be used in practical problems�

���� The Detector Noise

Conceptually the detector noise is simple� At each readout there is some noise on the

detector which then gets processed and ends up in the �nal output� The detector outputs

are contaminated by noise from the resistance of the detectors� the thermal conductance�

cosmic rays� and the readout noise of the electronics� The Johnson noise� and intrinsic

noise on the thermal link can be well approximated by a white noise source followed by a

�lter� The electronic readout noise is small and can also be well approximated by a white

noise source followed by a �di�erent� �lter� The cosmic rays can be approximated by delta

functions applied at random times with some distribution� Although all of these sources

lead to noise that is correlated in the time domain� because the noise processes are

stationary they are uncorrelated in the frequency domain� Thus the only frequency

correlations are introduced by the apodization�

������ The D Matrix

There are two ways to estimate the matrices� As the coadds are formed from the averages

of a number of IFGs� the mean dispersion is calculated and from it� the covariance in the

�nal data� This matrix is termed the �D Matrix�� For historical reasons we write the

covariance as D�
��Np where D

� is a diagonal matrix and Np is some number of

�observations� at each pixel� even though the matrix is not really diagonal� By keeping

only the square root of the diagonal part we store it in a vector space ��D Vector��� As

such we have estimates for the uncertainty of an IFG in any scan mode� For weighted

averages we use a standard weight and estimate a �D Vector� �per observation��

This is done for the calibration and the sky data� The calibration data taken in the

sky�like near null condition with all controllables near ��
 K show the same noise
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characteristics as the sky data� The calibration data taken with one or more of the

controllables at a high temperature had higher noise� so these data were deweighted with

respect to the sky�like null calibration data� But� the higher signals meant in general they

had higher signal to noise ratios �Section 
�
��

The data near the Galactic plane also had higher noise because the data had signi�cant

variation over a small change in position� These variations were �t before coadding by a

second template to reduce their impact on the data processing� Data that had many

glitches removed had more noise that those that had fewer glitches removed so the weights

were adjusted to account for the number of glitches �Section ����� Although the glitch noise

has a redder spectrum than the other bolometer noise we used a single spectrum to allow a

simple weight for each IFG� coadd and pixel�

������ The C Matrix

As the data are destriped� coadds from di�erent times and di�erent channels are compared�

The rms dispersions of the coadds are accumulated to �nd the mean covariance matrix

�the �C� matrix�� In the destriper each coadd is assigned a weight depending on the

channel� scan mode� and glitch rate� A single noise spectrum is then determined from the

dispersions among the coadds� The noise spectra of the di�erent channels are di�erent in

shape as well as amplitude so the use of a single noise spectrum for the combined data is

not as e�cient as it could have been� However the use of a frequency dependent weight

would only reduce the uncertainties � �� at the price of requiring a frequency dependent

weight� and position�

The sky covariance is given by�
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where N � P
i�sky �� wi is the weight �Section ����� fi is the fraction of pixel weight

supplied by the ith coadd� and nJ is the number of model functions �between �	 and �	��

It gives an estimate of the variance of a single interferogram that includes both the random

error due to the detector plus any remaining systematic variance� It also provides the scale

of the other destriper errors�

The square root of the diagonal is termed the �C vector�� Because the dispersion can

include errors associated with long term drift and channel to channel errors it might be

expected to be larger than the �D vector�� But because the weights have been adjusted for

time and position the �C vector� is actually lower than the �D vector� for some
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frequencies� The �C vector� is more inclusive and it is the preferred uncertainty estimator�

The C and D �vectors� are only a few percent di�erent �Figure 
���� In the following text

C� refers to the �vector� and C��� refers to the matrix�

Fig� 
���� Relative noise verses frequency � C and D vectors for LOWF �� to ��cm���

and HIGH ��	 to �		 cm����

The o� diagonal elements are estimated from the data exactly as the diagonal parts are�

This yields a ��	� ��	 covariance matrix� It is convenient to separate it into a correlation

part A and the diagonal part C which is the �C vector� identically� C��� � C�C��A��� � A

brief look at the A��� � shows it is very regular� Within �� it is summarized as A�� � where

�� � j� � � �j� This is called the �A vector��

The expected apodization e�ect can be calculated from A � FFT �apod��� This nearly

reproduces the measured �A vector� �Figure 
���� The di�erences can be attributed to

glitch correction e�ects� baseline subtraction� and perturbations like the vibrations and
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Fig� 
���� Frequency�frequency correlations � A vectors for LOWF and HIGH� The solid

lines are the �A Vector� estimated from the correlations in the C matrix� The dotted line is

the �A Vector� estimated from the apodization� and o�set by 	�� for clarity�



� 
� �

harmonics� The fact that �nal sky dispersions have the correlations implied by the

apodization function alone to within � �� gives strong support to this uncertainty

description�

���� The Emissivity Uncertainty

The P�EP� term is the uncertainty which results from the �emissivity� terms of the

calibration model in the calibration program� FISH� �e�g� errors in the emissivity of the

internal calibrator�� These errors are propagated to the �nal sky data by multiplying by

the Planck function� P�� associated with the temperature of the emitting object� in the

covariance matrix this term takes the form P� �E �P T
� � Since the critical objects are kept at

��
� K during the observations the P�EP� is summarized with P� �Planck���
�� with the

emissivity uncertainty matrix E� But the Px �P for the external calibrator� is the actual

sky spectrum�

For the low frequencies �� � �	 cm�� or �		 GHz� the sky spectrum is well approximated

by a ��
� K Planck spectrum and the full calculation can be done� The resulting error

estimate is contained in the PEP O�set �eld of the error term �le� For high frequencies

�� � �
 cm�� or 

	 GHz� the sky is quite variable and the calculation must be done at

each pixel� Most of the terms of the calculation are essentially zero because Planck�	 at

high frequencies� Only the single term Px� is signi�cant and it assumes the form of a gain

error� This gain error� PgEPg� is contained in the PEP GAIN �eld of the error term �le�

For frequencies in the range �	� �
 cm�� this situation is more complicated but is

reasonably well modeled by using both P�EP� and PgEPg�

Since the emissivities are calculated independently at each frequency� P�EP� and PgEPg

have no correlations across frequencies� However� because the whole sky is calibrated with

the same instrument emissivity model all pixels are correlated� The terms become

important whenever spectra from a large area of the sky are averaged to form a single

spectrum�

������ The Destriper and P�EP� O�set Errors

The uncertainty in the parameters of a linear least�squares �t is given by the diagonal

elements of the inverse of the curvature matrix �Section ����� Thus� the uncertainties in the

correction spectra of the destriper are given by�

�Jk� � C�

q
�Q�kk ����
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These quantities are useful for determining whether a particular function of the model is

signi�cant� The o��diagonal elements of Q give the covariance among the di�erent model

functions�

The destriper introduces correlations between pixels through the correction spectra� Jk����

These correlations and the uncertainties on the pixel spectra� Ap���� are contained in the

lower right sub�matrix �� In principle this matrix is easy to compute� however� in practice

it is not easy to store� However� if we perform a Cholesky decomposition on the real

symmetric matrix Q� then we can express this matrix as�

� � D�� � ��
T

����

where � � D��RTL and Q � L LT� Note that � has the same dimensions as R� where R

is the matrix of stripe kernels �Section �����

The excluded Galactic pixels are not included in �� however� it can be shown that

correlations among the pixel spectra�
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introduced by the destriper corrections� are given by the same expression�

D�� �D��RTQRD��� where D�� and R now include all observed pixels� �Q� still

excludes the pixels from the Galactic center� The diagonal elements of � give the pixel

spectra variance in units of C����

When modeling the pixel spectra� whether the entire sky or a more localized area� it is

necessary to compute the corresponding weights matrix given by
h
��p� p � � R�

i
��

where p

and p� are pixels within the region R� If the number of pixels within the region is small

then this can be done directly� however it is also possible to perform the inverse so that

only a small �	 � �	 matrix need be inverted explicitly� If we express the covariance

matrix �or the relevant sub�matrix� as�

��p� p � � R��fD����
h
Im �fD��� e� e�TfD���

ifD���� ����

� fD����
h
Im �U��TUT
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where fD � D�p � R�� Im is an m � m identity matrix �m � number of pixels in region��e� � ��p � R� and U is an m � n row orthogonal matrix �n � number of model

functions� then�

W � ���p�p� � R��
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where

��T � In � �I
n
���T�

��
	 ����

and

� � fD��� U� ��	�

We can compute U and � through a QR decomposition of fD��� e� and obtain � via a

Cholesky decomposition of In � �I
n
���T�

��
� Note that � is an m � n matrix and thus

easy to store and manipulate�

Because the destriper model includes the di�erence between the calibration and Planck

spectra� the destriper uncertainties� �� include �improved� P�EP� and JCJ o�set

uncertainties� These P�EP� uncertainties are most important when modeling a large

portion of the sky� for in this case the error is dominated by the uncertainty of the

calibration rather than that of the sky� This can be illustrated as follows� Consider a

destriper model with a single entire mission o�set with the sky described by a single pixel

of N observations� If the total number of calibration observations is given by n� then�

M �

�
N � n N

N N

�
�	M�� �

�

Nn

�
N �N
�N N � n

�
	 ����

The inverse of the lower right element of M�� is the e�ective number of observations or

weight and is given by neff � �Nn��N � n��� thus as N ��
� neff �� n� Therefore� no

matter how precisely the sky spectra are known� the absolute sky is determined no better

than the calibration�

������ � Uncertainties

The destriping e�ectively recalibrates the instrument eliminating the P�EP� o�set errors

�and replacing them with the destriper errors�� By �tting the sky with stripes� the o�set

errors in the emissivities of the FIRAS internal objects are eliminated� These are the

P�EP� o�set errors� However the gain uncertainties remain�

The stripe determinations are not perfect and the uncertainty in their determination still

leaves uncertainty in the sky maps� The HIGH data are destriped in three frequency

segments �Section ����� These have varying numbers and types of stripes� We approximate

all of the stripes with �	 stripes which are then good for all HIGH frequencies� There are

two approximations in this proceedure� First� we concatinate the stripes for the three

frequency segments weighted by the total weight of each frequency segment� The pixel

weight is divided out of each pixel to give a fair comparison of the data� The matrix is then
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decomposed into eigen values and eigen vectors� Then we select the eigen vectors and values

for the largest �	 eigen values� This set contains � ��� of the total power in the matrix�

Finally the pixel weight is multiplied back to give the same form as the original matrix�

This is obviously a simpli�cation� but since the original stripe kernels are empirically

motivated� even the full set of stripes is a simpli�cation� Further� by including the other

segments� uncertainties we allow for variation in kernels that are used in the other

segments� but do not have enough signal to be signi�cant� Finally� the reduction to �	

stripes merely mathematically encodes what we already know� many combinations are well

known� and the errors in them are unimportant� For example� the LHSS�RHSS is well

determined� since virtually every LHSS coadd has an RHSS coadd to compare� However�

since the HIGH uses the average� the LHSS�RHSS has the important uncertainty�

although it is much less well determined�

For the combined LOWF there are �	 stripes� When these stripes are orthogonalized the

largest few dominate the uncertainties� Therefore only the largest �	 need be used� This

e�ectively summarizes our knowledge and uncertainty of the stripes that we applied�

However� the stripes were largely motivated empirically� and the true form of the drifts

remains hidden� For this reason we recommend including an uncertainty of ��	� C� when

making measurements on the scale of �	� and larger�

������ Gain Uncertainties

Another way of estimating the gain errors is to compare the results of di�erent channels

and scan modes �Section 
�
�� The gain can be determined by weighting by the signal and

the pixel weight of each channel and scan mode� This shows the gain variations have a

random �in frequency� and correlated part� If the random part is identi�ed as the PgEPg

then it is larger by ��
 than the PgEPg estimated from the calibration results� We

recommend using this result because it is larger and it is derived from the �nal product�

��	� The Bolometer Model Uncertainties

The bolometer model parameters that are �t in the calibration program have uncertainties

which give rise to uncertainties in the sky spectra� These can be conveniently expressed

collectively as the product of the Jacobian� J � and the covariance matrix� C� �not the C of

Section 
��� of the parameter uncertainties� J �C �JT � A linear transformation to a di�erent

basis set is applied to the parameters to �nd the principal components of the covariance�
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Fig� 
���� PgEPg uncertainties � Estimated from the calibration models �LLSS� RLSS�

LLFA� and RLFA� and the variation in the calibrated data� Gain uncertainty is dimension�

less� The shape of the LOWF estimate is from the �C vector� and so should not be taken

too seriously� but the scale is determined from the calibrated data variation�
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Some errors can be well approximated as gain errors while others are better approximated

as o�set errors� To �nd these approximations the calibration parameters are perturbed and

the di�erence in the calibrated sky is noted for �� selected pixels� The pixels at high

latitude� where the signal is small� are used to determine the �typical� o�set while those at

low latitude� where the signal is large� are used to determine the �typical� gain variation�

These uncertainty estimates are contained in the vectors JCJ OFFSET and JCJ GAIN

�elds of the uncertainty terms �le� While all of the uncertainty terms are included for

completeness� most of the uncertainty is included in a single uncertainty term�

������ JCJ O�set

O�set errors are corrected to �rst order by the destriper �and replaced by the destriper

errors� so these are largely covered in the � matrix of the destriper� The � matrix is

assumed to be independent of frequency� however� the JCJ o�set errors are correlated�

This issue will be addressed again below in the �FEF� errors� Detailed study has not

shown the JCJ o�set errors to be a problem either in theory or in fact for either the low

frequency �where any JCJ is e�ectively overshadowed by the �� or the high frequency

where the � errors are larger and the sky variation can mask the e�ects�

������ JCJ Gain

For many of the JCJ gain terms the largest e�ect is a broadband error� These are

particularly signi�cant for the high frequency data� The raw terms tend to be  at or slowly

rising functions of frequency� sometimes with a steep increase at the high frequency end�

This can be easily understood as the highest frequencies remain in the Wien portion of the

spectrum even for the highest temperatures �� �	 K�� so a small change in these

temperatures in the calibration can lead to a large change in the spectrum and hence in the

gain� Over most of the spectrum however� there are at least some calibration data with the

frequency in the Rayleigh�Jeans part of the spectrum� Over this range changes in the

performance of the bolometer lead to changes in response over the whole spectrum� hence

the slow functions of frequency� Even changes in the heat capacity or electrical capacitance

e�ects lead to at most a linear dependence on frequency�

But JCJ gain uncertainties are a di�cult issue� The formal solution covers the uncertainty

in the model parameters� however it does not address the errors in the model form� The

variance of the data is strongly dependent on the temperature� and higher temperatures
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Fig� 
���� The JCJ o�set uncertainties � Derived from the calibration models� The

uncertainties re ect the amount and quality of the calibration data�
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Fig� 
�
�� JCJ gain uncertainties � Derived from the calibration models except for

LOWF and HIGH which are derived from the calibrated data di�erences� The dips in the

LOWF are probably the result of a chance alignment of the gains�
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lead to larger variance within the coadds� Even correcting for this� the 
� is larger for the

high temperature data �Section 
�
�� This is probably an indication of an inadequate

bolometer model� Still� even a much more  exible bolometer model is likely to have

similarly shaped Jacobians� because the major e�ects of the bolometer are in the

responsivity and the time constant� Further the structure of the 
� shows only the features

of the vibration lines and the transfer function� Since the radiative loading from the high

temperature calibrations is much higher than any place on the sky� the calibration data

stresses the model more than the sky data�

Barring the introduction of di�erent parameters in the model we have only a limited means

to estimate the true uncertainties� One method is to compare di�erent channels� The

random variations were identi�ed as PgEPg errors� Identifying the correlated variations in

gain as JCJ errors leads to the conclusion that the calibration JCJ determination

underestimates the JCJ gain error by a factor of 
� This suggests errors of ��� however�

the basic model is the same in all cases� A missing parameter �X� could well have a similar

e�ect for all channels� If such a factor exists� it probably depends either on the radiative

loading on the dectector or on the time constant of the detector� The implied power is

di�erent by a factor of � � between the left and right and the output frequency is in the

ratio ��� for fast and slow� So� although �X� may push all of the channels in the same

direction� it should push left or right � � times further or push fast or slow ��
 times

further� In either case� the correlated gain errors are the right scale� The results from FISH

typically estimate the high frequency gain uncertainties a factor of ��� larger than the low

frequency uncertainties� and� in fact� they appear a factor of � � larger� We recommend

the combined JCJ gain uncertainties plotted in Figure 
�
 or 	��� for LOWF�

The di�erences between LLLF and RLLF are too noisy to use to estimate the gain

uncertainty� The HRES P�EP� uncertainty is estimated from the FISH estimates by

multiplying by ��
� the ratio observed in LOWF� The HRES JCJ estimate is just two times

the LOWF estimate� The factor of two comes from the ratio of the amount of calibration

data in HRES to that of LOWF� The correlated gain errors are treated next�

��
� The Temperature Noise

Errors in the temperature of the various components of the FIRAS while observing the sky

get wrongly attributed to the sky� Each error �Tk of course is multiplied by the emissivity

of object ek and the Planck function� Pk � �Planck��T jTk � The errors and emissivities can

be summed into a convenient matrix Ukk�� So the variance can be expressed asP
kk� Pk�Ukk�pp�Pk��� � We assume that the o� diagonal terms �that is the correlations
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between thermometers� are negligible� but it is not required for the formalism� The

emissivities show that U is dominated by the ICAL� eI � 	�� �the XCAL is not in the horn

for sky observations�� except during the �hot horn� season which is treated separately�

Since all of the critical elements are kept at ��
 K for most of the  ight the subscript of the

Pk is dropped� If we make the assumption �not entirely warranted� that the ICAL

temperature readings are independent then the pp� part of the U becomes diagonal and can

be conveniently summarized as ��Np where Np is the number of observations of the pixel�

Then the PUP problem is reduced to estimating a single constant� the uncertainty of

reading the ICAL temperature in an IFG� There are three separate ways of estimating this

uncertainty�

��	��� Resistor Noise

To calibrate the Germanium Resistance Thermometers �GRTs�� FIRAS uses a set of �

�xed resistors in the circuit� These were measured along with the GRTs every �� seconds

during the �	 month mission� These � � million measurements can also be used to

estimate the readout noise of the electronics in situ to high precision� The rms estimate�

���� bits is good to �� for all of the resistors� Multiplying this by an estimate of ��	

�K per bit gives an rms uncertainty of ��
� �K per readout�

Since the critical ICAL temperatures are derived from two thermometers on two sides as

the interpolation between two times� the temperatures are derived from eight separate

readouts� This implies an rms uncertainty of ��	 �K on each IFG and a similar

uncertainty on each sky measurement�

This estimate ignores possible correlations and e�ects that might make the GRT readings

less stable than the resistor measurements� so this can be treated as a lower limit to the

PUP uncertainty�

��	��� Calibration Noise

In the calibration program �FISH� we explicitly solve for the temperatures of the ICAL�

XCAL etc� This list of corrections can be used as an estimator of the rms errors of the

temperature readout and hence an estimator of the PUP uncertainty�

The rms weighted noise estimated in this way is ��
 �K per IFG� However there are two

corrections which must be applied to get an estimate of the PUP uncertainty� First it

must be multiplied by
p
� because FISH is only sensitive to the di�erence in temperatures
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in the cold data set �all controllables between ��� K and ��� K�� which is divided between

the ICAL and XCAL corrections� Second in the calibration data the IFGs are taken �back

to back� so there are correlations introduced by the interpolation to get the temperatures�

On average these in ate the �nal noise by ��	�� So after correcting for these e�ects the

estimated PUP uncertainty is �	�� �K �

At �rst blush it might seem that this is a perfect estimator of the PUP uncertainty�

however there are stripe errors �which we later �nd and remove in the destriper� and these

are included in the estimate� Also there are only of order �		 cold coadds from which to

make the estimate� The �rst item means that this estimator may be biased high and the

second suggests uncertainties in the PUP estimate of � ���

��	��� Resulting Noise

The �nal answer is always a good place to look for noise� In this case we can use several

techniques to extract the CMB temperature �Fixsen ���
a� and that temperature can be

compared to the known temperature� In the comparison to the DMR temperatures we note

there is �extra noise� in the FIRAS data at � �
 �K per DMR beam not accounted for by

other uncertainties� On average there are 
�
 IFGs!beam� A DMR beam is ���� pixels�

There are ������ LLSS IFGs and �

�	
 LLFA IFGs in the sky data� The RL data are not

counted� as their PUP error is fully correlated with the corresponding LL PUP error� This

gives an estimate of ���� �K per IFG�

Since this is an estimate of PUP from the �nal data it leaves little chance that there is

something else �hiding� in the data� However� this discrepancy may be due� at least in

part� to other errors� In particular the stripe errors may make a signi�cant contribution to

this uncertainty� Still this provides a �rm upper limit to the PUP uncertainty�

��	�	� Hot Horns

For �� days during the mission the horns �both the sky horn and the reference horn� were

held at an elevated temperature� �rst �K and then �K� Although the horn emissivities are

much smaller than the ICAL the higher temperatures more than overcome the emissivity

and the the net PUP is larger than during normal times� However the PUP in this case is

�dP�dT at �K rather than dP�dT at ��
K� because the horn e � ��
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��	�
� Recommended PUP

The three quite di�erent methods of estimating the PUP uncertainty vary by only �	��

Further the order is what is expected given the possibility of contamination by other

uncertainties� We recommend the use of � mK per IFG or �
	 �K per observation as a

good estimate of the PUP uncertainty� with an additional ��K �dP�dT at �K during the

hot horn time�

���� The Temperature Uncertainty

Thermometry errors during calibration induce systematic errors in the calibration model

parameters� These are collectively called the PTP error� Since there are a large number of

measurements in the calibration data �� �				�� small random errors largely cancel out�

Furthermore� systematic errors in the thermometers of the internal calibrator� the horns�

and other internal components of the instrument will be repeated while taking sky data�

Hence� the �errors� induced in the model will later be removed by the same �errors� when

observing the sky� This is not so for the external calibrator� for which any systematic errors

are reproduced in the �nal sky spectra� Thus� the dominant contribution to the PTP

uncertainty is the systematic error in the external calibrator� The form of the PTP error is

�P

�T
� T � �P

�T
����

where the outer factor is the partial derivative of the Planck function of the CMBR with

respect to temperature� and T is the variance of the thermometer uncertainty for XCAL�

The estimate of the absolute thermometry uncertainty is based primarily on the

disagreement between the photometric and thermometric models� which di�ered by ���

mK at ��
 K� We have split the di�erence and adopted � mK as the one 
 uncertainty in

the XCAL thermometer� This uncertainty estimate is contained in the PTP TEMP and

PTP SPEC �elds of the uncertainty term �le� These were checked by a third method

which uses the Dipole of the CMB� This uses the same frequency scale� however� if we use

the DMR to recalibrate the amplitude� we have an independent check� which gives a

correction of �
� �mK to the XCAL thermometry�

These three methods give answers that are within three sigma� Apparently there are

additional systematic errors in one or more of these methods� We recommend a ����
 mK

temperature adjustment to the XCAL diode temperature scale� This has been applied to

the calibrated data� We recommend a � mK estimate of the PTP uncertainty� This allows

covering both the color temperature calibration and the thermometer calibration� While
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this is not a true statistical uncertainty it is a useful summary of the uncertainty in the

result� The PTP error is the dominant error for the absolute temperature of the CMBR

and is important for comparisons of FIRAS measurements to other experiments�

���� Full Uncertainties

Fig� 
���� FIRAS Uncertainty Summary � Plots of calibration model solution uncer�

tainty estimates from the C vector� the P�EP�� the �� the JCJ� the PUP� and the PTP

uncertainties� The uncertainties for JCJ gain and PgEPg have been multiplied by the aver�

age sky�

The calibration model uncertainties are shown in Figure 
��� The o�set uncertainties have

contributions from all �ve error terms� while the gain uncertainties only have contributions

from the PgEPg and JCJ uncertainties� The gain uncertainties are multiplied by the
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average sky in order to make a meaningful comparison� Examination of the o�set

uncertainties shows that for analyses using less then ��		 observations� the C�Vector
uncertainties dominate� but for larger data sets other uncertainties must be taken into

consideration� Examination of the gain uncertainties shows that the JCJ gain error

dominates the PgEPg uncertainties� The e�ect of these uncertainties on particular analyses

is discussed in Section 
��	�

The largest uncertainty �at least over part of the range� is the PTP so when it applies� that

is� when the question is what is the absolute temperature� it is the dominant term� Next is

the C�Vector� but this is for a single average pixel� By averaging or �tting over either pixels

or frequencies it can be suppressed� When averaging or �tting over pixels the PUP is also

suppressed� so it is only important when �nding temperature variations and then it is

smaller although on the the same order as the C�Vector� The JCJ gain uncertainty is

important at higher frequencies particularly if �tting or averaging over frequencies� The �

o�set takes the place of the P�EP� which dominates when averaging more than about �		

�observations�� The � shown here is an �average� over the sky� it can be larger or smaller

depending on the sky sample� The PgEPg uncertainty is only important when looking at

di�erential measurements over frequency� e�g� �nding lines� We have not found the JCJ

o�set to be a signi�cant uncertainty but we include it here for completeness�

���� 
� Distributions of Combined Skymaps

We have compared the actual 
� distributions to expected distributions for HIGH� LOWF�

and HRES� In the HIGH and LOWF combinations the Galaxy stands out as a region of

high 
�� This is due to the fast and slow data sets being taken at di�erent times and hence

the registration di�erence is of the order of a pixel ���
��� This has only a small e�ect

where there is only a slowly varying signal� but near the Galactic plane it is signi�cant�

The errors show the largest 
� is not on the Galactic plane but approximately �� to either

side where the beam is just starting to pick up the Galactic plane�

The HIGH skymap displays an excess in 
� due to position variation at Galactic latitudes

less than �	� �Figure 
�
�� The e�ect is smaller for the LOWF because the high frequency

band is more sensitive to the Galactic signal� As with LOWF� sets of IFGs for HIGH were

obtained at di�erent times�

The combined 
� vs� frequency for HIGH averaged for all pixels greater than �� from the

Galactic plane shows the 
� to be anomalously large at the seven highest frequencies� The

actual and expected 
� distributions agree well� however� if one assumes an �� random
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Fig� 
�
�� 
�!DOF as a function of Galactic latitude � The gradient induces variation

in the data larger than the intrinsic variance near the Galactic plane�
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Fig� 
���� Histograms of the 
�!DOF of the HIGH� LOWF� and HRES combinations �

The DOF for these combinations are �
	� ��� and ���� respectively� The Galactic center is

omitted from these plots�



� �	 �

error in the pixel weight �Figure 
����

The combined 
� averaged for LOWF for all pixels greater than 
�away from the Galactic

plane has a broader distribution than expected� The actual and expected 
� distributions

agree well� if one assumes a �
� random error in the pixel weight �Figure 
����

The HRES map shows no evidence of the Galaxy� This is expected� since the input LLLF

and RLLF maps have minimal registration di�erence� The HRES map does display stripes

of anomalously low and high 
� � The relation of these stripes to mission intervals when

the sky and reference horns were raised to higher temperatures suggests that errors in the

calibration model for LLLF and!or RLLF may not have been entirely removed by

destriping� The other maps show high 
� associated with the Galaxy� but are otherwise

free of obvious systematic e�ects�

��
� �FIRAS Extra Factor� Errors

A way to investigate possible errors is to change the processing in �modest and reasonable�

ways and to note the variation in the output� Although not particularly quantitative� these

variations indicate the type and scale of errors introduced by the restrictions of the models

used in processing the FIRAS data� These FIRAS Extra Factors �FEF� are not rigorous

errors in the statistical sense� but are included to point out possible pitfalls for users of the

FIRAS data�

������ The Destriper Model

The �nal results from the FIRAS data depend on several choices concerning the destriper

model� The choices made in the data processing were the �best� choices in our estimation�

Other choices are possible� so we have provided the change in o�set for several di�erent

parameterizations �Figures 
�� to 
����� These changes can be used to estimate an

uncertainty in a �nal result� This is not straight forward� since a one 
 result is not de�ned

for a change in the model� Rather than a true estimation of errors� these changes should be

used to allay fears �in many cases� or to emphasize caution� In all cases� we have estimated

an o�set by subtracting the nominal result from a variant averaged over jbj � �	� � which

measures the o�set over a cosmologically interesting region of the sky�

The nominal destriper model has from �	 to �	 terms �Section ����� The project data sets

contain �ve sets of comparisons of destriper models� three frequency band comparisons� a

low frequency low resolution comparison� and a low frequency high resolution comparison�
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Fig� 
���� Galactic gradient model di�erence spectra � Average variations in the sky

spectra for changes in the number or form of the gradient models�
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Fig� 
��	�� Galactic gradient model di�erence spectra �continued� � Q�v� Figure 
��
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Fig� 
����� Vibration and time stripe di�erence spectra � Average variations in the sky

spectra if no vibration stripe was included or if one less time stripe was included� Even

though the e�ect is small in the LOWF� it is still signi�cant�
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Fig� 
����� Dihedral and bolometer stripe di�erence spectra � Average variations in the

sky spectra if the dihedral and bolometer stripes were not included� The e�ects in LOWF

are signi�cant� if small�
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Fig� 
����� Additional galactic gradient and time model di�erence spectra � Average

variations in the sky spectra when an additional DIRBE based stripe or an additional time

stripe are used� The magnitude of the time stripe di�erence appears large at high frequencies�

but the uncertainties are large there as well� The stripe is not signi�cant by the F test�
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Fig� 
����� Additional bolometer and "hot horn� di�erence spectra � Average variations

in the sky spectra when a bolometer stripe� a �K horn� or �K horn stripe� for data where

such stripes were not used� The additions fail the F test�
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Table 
��� FEF Comparisons

Comparison Description

FEF � No DIRBE

FEF � DIRBE �	 Only

FEF � DIRBE � Only

FEF � DIRBE � Only

FEF 
 No Vibration

FEF � Eliminating a Time Stripe

FEF 
 No Dihedral

FEF � No Bolometer

FEF � Three DIRBE Channels �Adding Band ��

FEF �	 Adding a Time Stripe

FEF �� Add Bolometer

FEF �� Add Horn

Each of these data sets contains comparisons of destriper models� which are shown in

Table 
��� The comparisons for LOWF and HIGH are shown in Figures 
�� through 
����

The HRES comparisons are available� but are not plotted here�

Together� these comparisons show that �nal results are quite robust under variations of the

destriper model� The LOWF variations are typically on the scale of a few kJy!sr �� �	��

of the CMBR peak�� These are � 		� 
 for a large fraction of the data� so we can be

con�dent that any reasonable destriper will give a comparable answer� Since the same data

are going into both destripers the errors could in principle be zero� A point at �	�� cm��

���� GHz� often sticks out in the LLSS and RLSS data� this is the vibration discussed in

Sections ����
 and 
�����

More problems are visible in the high frequency data� The vibration stands out at 
��


cm�� ���	� GHz� and �� cm�� ����� GHz� in the slow and fast data respectively� The high

frequency �� 
	 cm��or ��		 GHz� fall o� in the performance of the interferometer is

evident in the larger errors there� Still the high frequency data are robust under the

various choices of destriper� with variations � 		� 
�

Since the gain variation is an issue for the high frequency channels �Fixsen et al�� ����b�

we have included the gain under changes in the destriper model� Not surprisingly the gain

changes show little variation since the destriper does not adjust the gain�
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������ Channel Consistency

One of the strengths of the FIRAS is that it has multiple channels which cover the same

parts of the spectrum� These allow cross checks on the results at many points� If we look

at the di�erences between the channels we see they generally agree to within a few 
�

These di�erences are statistically signi�cant� but we have no clear explanation of their

causes� This test is not as powerful as one might hope since the LH detector has much

more noise than the RH detector and the RL detector has more noise than the LL detector�

Comparing the gain of the various channels also indicates the possibility of problems� The

gain ratio test is only valid for � �� �
 cm�� �

	 GHz� since absolute spectra were

compared rather than di�erential spectra �Section 
����

To estimate the variations in gain� each channel combination was used to construct a

separate map� Each of these maps was then averaged with a weight that included a factor

for the noise of each of the maps and a factor for the amplitude of the signal� The result is

a spectrum for each of the channels� and a comparison spectrum for the full map� The

ratios of these should ideally be one� however� noise and gain errors will induce variations�

The variations are �t with a polynomial ��	th order for HIGH and �th order for LOWF��

The polynomials are identi�ed as the systematic variations �JCJ�� while the residuals are

identi�ed as the random �in frequency� variations �PgEPg errors�� These are larger than

expected by the gain uncertainties propagated from the FISH results� particularly in the

case of JCJ� So� the results were combined to give an estimate for the PgEPg and JCJ

uncertainties �Sections 
����� 
����� in the �nal HIGH and LOWF data sets� Comparison

noise dominates in the HRES case�

We have compared the FIRAS HIGH data to the DIRBE bands �� �� and �	 data� This is

a robust check since the DIRBE instrument is quite di�erent� has a di�erent calibration

standard� and looks at the same region of the sky at di�erent times from the FIRAS

observations� The results for band �	 �� � ��� � cm��� and band � �� � 
�� �	 cm���

show that to within � 
� DIRBE and FIRAS HIGH data agree� While the absolute

DIRBE gain calibration is only known to �	�� the agreement with FIRAS suggests that

both are correct to �
�� At band � �� � �		� �	 cm��� the agreement is good to �	��

Noise on the FIRAS data and the necessity of a color correction limit the accuracy of the

band � comparison�

The comparison with DMR �Fixsen et al� ���
a� gives less than 	�
� di�erence in the

amplitude of the dipole� This suggests that the gain error is �		
� for the low frequencies�

in agreement with our estimate of 	�����
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���� Unmodeled Systematic Errors

In addition to the modeled uncertainties other discrepancies have appeared in the data

analysis� These problems are di�cult to quantify and their consideration can be awkward

but in some applications they dominate the error picture and so they must be considered�

��
��� Vibration

There are major MTM resonances at 

�

 Hz and ���� Hz� and there are e�ects on the

spectra at harmonics and sum and di�erence frequencies associated with these resonances�

A vibration correction term in the calibration model corrects most e�ects� However� at the

vibration frequencies themselves� the data cannot be entirely corrected� Destriping has

greatly suppressed this problem� but one should be wary of any result that depends on the

vibration frequencies �Section ����
�� The data frequencies translate to optical frequencies


��
 and �	�� cm�� ���	� and ��� GHz� for slow scans or ���	 and 
�� cm�� ����� and ���

GHz� for fast scans�

For the high fast data the second harmonic of the vibration ���
��� Hz� occurs at an

optical frequency of ���	 cm��� In addition� there are sidebands of this harmonic that can

contaminate the data above �	 cm��� These sidebands have not been modeled in the

calibration� but have been suppressed by destriping� The second harmonic should be small

relative to the main vibration but the signals at high frequencies are also small� In the high

frequency slow data the second harmonic is pushed to ��
 cm�� and even the sidebands

will be strongly attenuated by ��	 cm�� so the slow data are not contaminated in this way�

��
��� Phase Corrections

There are some signi�cant phase shifts in some of the data� We provide undestriped

complex spectra as they are derived from the Fourier transformation� Ideally� the

imaginary parts of these spectra would be zero except in regions of the spectra where there

are high resolution spectral features� e�g�� lines or bandpass �lter edges� The line�like

features in the imaginary parts are important in the determination of  ux and frequency of

real astrophysical line emission� but the wideband features in the imaginary parts are

presumed to indicate instrument or data analysis faults�

The principal sources of phase variation in the complex spectra are resonant vibrations in

the MTM and a small phase shift of unknown origin that is largely linear in frequency �i�e�
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equivalent to a small displacement of the interferogram��

In addition to the MTM� an unknown source induced both short term and long term

interferogram phase variations� It is important for high signal �i�e� far from null� data�

which occurs primarily in calibration and in the high frequency channels in the Galactic

plane� To account for this� we have introduced a phase corrector of the form ei��� where �

is typically � �	�� cm but is statistically signi�cant� Because the phase is time variable we

�t a � to each calibration spectrum� It is not possible to follow an identical phase

correction procedure for �cold� sky data� most of which are near null� so an analogous

correction is applied wherein the phase is determined by minimizing the imaginary

component of the sky spectrum� When applied to the calibration data as well� the results

of this algorithm match the results of the more sophisticated �t� Phase errors are most

important for the imaginary parts of the spectrum because ei�� � �� � ������� � i��� for

small errors� The e�ect on the imaginary part is linear in the error� while the e�ect on the

real part is second order as most of the information is in the real part of the spectrum�

��
��� Pointing Errors

The pointing solution is from the DIRBE data which have uncertainties smaller than 	���

�Wright ���	�� Since the FIRAS beam is by de�nition aligned with the spin axis of the

COBE spacecraft� the FIRAS absolute and relative pointing is good to this same level�

This is much better than is required for the 
� beam�

Each IFG is assigned to a pixel according to the line of sight at the center of the observing

time interval� but the line of sight moves during that time� In addition� each individual

IFG in a coadd group will have sampled its own distinct swath of the sky about that pixel�

The individual swaths will largely overlap� since the pixel is oversampled� but the overlap

will not be exact� In regions of the sky with large gradients in brightness across the �eld of

view� especially the Galactic plane� we can expect the mean measured spectrum for a pixel

to depend upon the details of the pixel sampling �Section 
����

The data preparation averages all the observations within a given pixel that are su�ciently

consistent with one another and computes a mean line of sight for these consistent

interferograms� The process of consistency determination is nonlinear� since it is intended

to eliminate seriously defective IFGs� It is therefore di�cult to make a quantitative

estimate of these errors from the dispersion of the position coordinates alone�

A reasonably reliable estimate can be made from the dispersion of the spectra of individual

coadds from the pixel mean� For most pixels� this dispersion is dominated by the random
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noise described by the �C Vector�� Near the Galactic plane� the pointing dispersion

dominates �Figure 
�
��

��
�	� The Beam Pro�le

The sky horn antenna of the FIRAS is imperfect� especially at the higher frequencies�

Observations of the Moon show both radial and azimuthal deviations from the nominal 
�

circular top hat beam pro�le �Figure 
��
��

Fig� 
��
�� FIRAS beam map � Determined by moon observations� Both linear and

logarithmic plots are displayed to show the structure in the beam and the sidelobes�

The measured pro�le is uniform with respect to radial angle for lunar aspect angles less

than ���� � About 
�� of a �
 cm�� point source  ux is contained within a circle of 
���

diameter� An additional ��� of the  ux is contained within an annulus of 
��� to 
� � with
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about �� leaking out of the nominal beam� Within the central 
��� circle� we observe

azimuthal variations of �
� at �
 cm�� and �
� at 
	 cm���

Although these variations appear to be large� it is important to note that each sky pixel

contains data taken from on average �		 IFGs� and each of those is the average of ��

strokes of the interferometer taken while the spacecraft spins about half a revolution and

moves its line of sight� Therefore� the e�ective beam pro�le is the average of many pro�les

taken in a large number of possible orientations and positions� and the residual errors are

expected to be very small� It is su�cient to note that the beam pro�le is re ected in the

pointing variance�

����� Propagation of Errors

The data can be thought of as a matrix with each row as a map at a particular frequency�

and each column as a spectrum of a particular pixel� Thus the data can be labeled Sp�� A

full covariance matrix would be of the form Vpp���� which has ���	 � ������ � �	��

components� This is too large to store or use easily� so we store �ve parts which must be

added to get the covariance matrix�

V � D �or C� � P�EP� � JCJ � PUP � PTP ����

Since the covariances of each uncertainty term add linearly� the uncertainty vectors add in

quadrature� Normally� only one or two of the dominant uncertainties need be considered

when analyzing the data� but which terms dominate depends on how the data are used� In

general� averaging the spectra over di�erent parameters will reduce one or more of the

uncertainties leaving the others dominant�

The e�ect of averaging or �tting spectra across pixels reduces the D and PUP

uncertainties� The e�ect of averaging or �tting spectra across frequencies reduces the D

and P�EP� uncertainties� The PTP and JCJ uncertainties remain unchanged no matter

how the data are averaged�

To explicitly state the full propagation of uncertainties� suppose a solution of interest� Aa�

can be obtained from the FIRAS data Sp� by some linear operator H�

Aa � Ha
p�S

p� ����

where we have adopted the Einstein summation convention� The index p runs over the list

of pixels and � runs over the frequencies� Now the uncertainty terms that have been

discussed �and provided with the data� are� the C matrix� C���

� the beta matrix��p
k� the
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pixel weight�Np� the JCJ gain term�J�� the PgEPg term�G�� the PUP temperature�

uncertainty U � and the PTP absolute temperature uncertainty�T � Then the variance in

the result Aa is a matrix V ab and

V ab � Ha
p�H

b
p����C���

��pp
�

�Np��
p
k�p�k�		�

���Sp�Sp���

�J�J��

�G�G����
�

��P �P ��

�U��pp
�

�Np�T
���

��
�

with some abuse of the summation convention� The �pp
�

is the familiar delta function which

is one if the indecies match and zero otherwise and P � � �Planck��	
��� ����T �

After reading all of the error analysis and data devoted to error estimation one might come

to the erroneous conclusion that the error estimation is di�cult and complex� All of the

processing has maintained the separability of the pixels and frequencies� This means that

in operations involving �ts �an average is a particular type of �t� in the pixel domain alone�

only the ��Np and the � terms need to be treated� The C���

� G�� J�� and P � merely tag

along and multiply the uncertainty of the result� Similarly when making a �t on the

frequencies only �as in our line and temperature �ts� only the C���

� G�� and J� need to be

treated and the ��Np and the � terms are carried along and multiply the uncertainties of

the results� If a �t involves both pixels and frequencies in a way that can be expressed as a

product of operators then the pixels and frequencies can be treated separately�

Further simpli�cation can be realized by noting that in any particular example only one or

two terms may completely dominate the uncertainty� A few rules of thumb can be applied

in determining the uncertainty terms that need to be used in analyzing the FIRAS data�

Five examples of the use of the uncertainty terms in particular situations are provided�

The rules of thumb are�

�� When only a few pixels are used �with less than �		 observations� and the signal is

small� the detector noise alone is adequate�

�� When the signal levels are large� gain uncertainties �PgEPg� JCJ� dominate�

�� When data are averaged over large areas �more than ��		 observations� the destriper
uncertainties dominate�

�� When large scale structure in the spectra is analyzed JCJ is important�


� When the absolute temperature is desired �in almost any data set� ONLY the PTP

need be considered�
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In any case when the �nal residual from any �t or model is made one should look over the

list of FEF errors for one �nal sanity check�

These examples are given as questions to be asked of the data�

�� Question� What is the spectrum of the north Galactic pole#

Dominant Uncertainty� C

Explanation� In order to answer this question we select all of the pixels with Galactic

latitudes greater than �
� and average them weighted by the number of pixels� We

notice that the total number of observations which went into these spectra is �� Since

this number is less than �		� we expect that only the C uncertainty is important�

The only part of the analysis where this is not true is for the absolute temperature of

the CMBR�

�� Question� Is there H�O absorption at the Galactic center#

Dominant Uncertainty� PgEPg

Explanation� Here we average together spectra within 
� of the center of the Galaxy�

If the C uncertainty is the only uncertainty included in the analysis� it would appear

that there is a very signi�cant dip in the average spectra at the H�O line� However�

the dip is only a small fraction of the total power at the line� Because the signal level

is high the gain  uctuations as a function of frequency �the PgEPg gain� are

important� Taking these uncertainties into account shows that the dip is a �� 

e�ect�

�� Question� What is the temperature of the Galactic dust#

Dominant Uncertainty� JCJ

Explanation� We make a weighted average of the Galaxy spectra� In this weighted

average we note there are approximately 
�	 observations� This tells us that C is

unlikely to be a good estimate of the uncertainty� The PgEPg uncertainty is more

important than the C� but the JCJ is still more important� Although the PgEPg

uncertainty is big at any given frequency� �tting the temperature over frequency

reduces the e�ect of the PgEPg� Since the JCJ shows a systematic trend correlated

from frequency to frequency� such an error reduction does not occur for the

temperature �t� Consequently� the JCJ uncertainty dominates�

�� Question� What is the absolute temperature of the CMBR#

Dominant Uncertainty� PTP
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Explanation� The PTP is the largest error� but it is only important when estimating

the absolute temperature� This uncertainty is derived from the uncertainty in the

absolute temperature of the external calibration thermometers� Since the sky on

average looks VERY much like the external calibrator� we only need to know what

the external calibrator temperature is to get the CMBR temperature� But there is a

� mK uncertainty in the calibrator temperature� hence there is a � mK error in the

absolute temperature� even though there is enough signal�to�noise to see temperature

variations of �	 �K�


� Question� Can we see the temperature anisotropy that is seen by the COBE DMR #

Dominant Uncertainties� PUP�D

Explanation� The PUP uncertainty becomes important when looking for anisotropy

in the CMBR� Since we are looking for variation in the absolute temperature across

the sky� JCJ and PTP are unimportant� Fitting the CMBR temperature over

frequency reduces the P�EP� and C uncertainties� Thus the dominant uncertainty is

C� but PUP is of the same order so it must be included too� This �and related

questions� is the only type of modeling where the PUP uncertainty is important�

Note that in four of the �ve examples only one of the error terms is needed� And in

Question 
 only two terms need to be considered� Further the full matrix was not needed

as the error can be calculated after the �nal result was obtained�


