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Have you ever wondered how scientists determine the size or age of the universe?
These bulk properties are a bit mysterious unless you can calculate them for yourself.
The physical model of the expanding universe is the primary focus of our class and
you’ll be studying it in detail. This model relies on conservation of energy (kinetic
and potential) and the thermodynamic properties of fluids and it is calculated in a
coordinate system that expands with a scale factor, a(t). To tie the model to reality,
we have to understand how it impacts observable quantities like the redshift of a
galaxy and the brightness or size of a galaxy. After all, it is only when we compare
observations to a particular model that we find out whether the model is true or not.
Models without supporting data are then fantasies of a creative inventor.

In the first part of this project, we will use a(t) to compute observable quantities. In
the second part, we will use the general solution to the Friedman Equation to
determine a(t) for any universe of our choosing. This allows us to calculate the age
and size of the universe. Then we’ll explore the parameter space to determine how
close Ryden’s Benchmark model comes to the current best-measured parameters.

Part 1 — Observable Quantities

Telescopes generally point at astronomical sources to measure their photon
intensity, spectra, and angular extent on the sky. At large distances these
observables depend on the geometry and expansion rate of the universe. In fact, the
expansion leads directly to an observed reddening of distant objects. We define this
redshift in terms of the wavelength of light. If a distant galaxy emits light of a
wavelength, Ae, (e is for emitted) we will observe its redshifted wavelength, Ao, (0 is
for observed) and the redshift is defined as (Ryden Eqn 2.4) [1]

z= (Ao = Ae)/ e (1)

The spectral lines of hydrogen, helium, and a number of other elements are routinely
measured in undergraduate laboratories and you’ve probably seen this yourself
when you studied optics. Remember that the each wavelength of light is a specific
color. When the color changes, so does the wavelength. In astronomy, a
spectrometer is used to measure the observed wavelength of astronomical objects
with strong spectral lines. Since we already know the emitted wavelengths from our



Expansion History of the Universe

laboratory studies we can determine how the wavelength has changed and we call
the relative change the redshift. A redshift can result from a Doppler shift due to the
velocity of the astronomical source or from the expansion of the universe. In general,
redshifts are a combination of the two. Beyond a redshift of about 0.03, however, the
expansion of the universe dominates and the Doppler shift can be neglected.

To understand redshifts due to the expanding universe we need to see how length is
defined during the expansion. The Robertson-Walker metric expresses the observed
length, ds, in terms of the general relativistic space-time elements in spherical

coordinates, dt, dr, and dQ = /d6? + sin260d¢>2. (Ryden 3.25)

ds? = —c?dt? + a(t)?[dr? + Sk (r)?dQ?] (2)

where c is the speed of light, a(t) is a unitless scale factor that describes the spatial
expansion of the metric, and Sk(r) accounts for the curvature of space.

Rysin (r/Ry) fork = +1
Se(r) =4r fork =0 (3)
Rysinh (r/R,) forkx = -1

where Ry is the radius of curvature of the metric. Our universe appears to be flat
with Sk(r) = r, but the metric allows for positive curvature, k=+1, and negative
curvature, k=-1. Notice that the flat metric reduces to spherical coordinates with the
additional special relativistic term, -c dt, and the expansion scale factor, a(t). For
convenience we set the scale factor to unity at the present time, a(t,) = 1.

The curvature, Ry, and the sign of the curvature, «, are determined from the Friedman
equation: (Ryden 4.31)

Kk  HE
=% -1 (4)
The curvature, R, is related to whether the total energy density is greater or less

than the critical energy density (Qo= Qm,0+Rr0+2,,0). This is one of the few times
that we can determine two variables with one equation. For example, if ;>1, then

the right-hand side is positive, k=+1, and with this information we can solve for the
C

Ho/Qo—1"

radius of curvature, R, =

Locations at fixed coordinates, r, 6, and ¢ in this metric are called comoving because
they are observed to move in relation to each other by the scale factor, a(t). We use
light traveling between a comoving emission and observation point to measure the
comoving distance interval, dr. Let's set the origin of the coordinate system at the
telescope that observes the light. In this coordinate system a photon travels radially
toward the observation point at a constant angle, 8 and ¢, from the emitting source.
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This means that dQ2=0. Furthermore, light travels along null geodesics defined by
ds = 0 which allows us to solve for the comoving distance interval, dr = ¢ dt/a(t).

Two important results come from this. First, if we consider the wavelength of a
photon A = cdt where dt is the period of the photon's oscillation, we find that this is
a(te)dr at the emission time and a(t,)dr when it is observed. For these comoving
observers, dr is the same at both times and it is easy to show that the scale factor of
the expanding universe, a(t), is related to the redshift by: (Ryden Eqn 3.46)

1

z= 1 (5)

Talty)

where we have set today's scale factor to unity, a(t,) = 1. By measuring the redshift,
z, of an astronomical source as a shift in wavelength, we learn the value of the scale
factor at the time the light was emitted.

Second, we find the line-of-sight distance to the source at the time we observe it.
This is called the conformal distance and it is found by integrating over time from the
observed time, t,, backward to the emission time, t.. (Ryden Egns. 3.39 and 5.35)

D Dcd fto dt (6)
= r=c¢ R
¢ 0 te a(t)

You may remember the importance of the proper distance in relativity. It is defined
as the smallest distance observed by all commoving observers at a single time, ¢
Eqn. 2 shows us that smallest distance occurs when time is a constant, dt = 0 and the
radial proper distance is D,,(t;) = [ ds = a(t;) [ dr. The proper distance today is the
conformal distance Dy(t,)=D.. In an expanding universe the proper distance was
smaller at the time the light was emitted D,(t.)=a(t.)D..

Now that we have good definitions for distance, we can talk about what people see in
their telescopes. The distance factors are derived in Ryden Ch. 7 for the flat universe
where Sk(D¢)=Dc. Here we extend the discussion to include curvature. The observed
width of a galaxy on the sky, 4Q, is related to the galaxy’s diameter:

true galaxy diameter = D4 482 (7)

where Dais the angular diameter distance. To get a feel for this, imagine that one
night you look up and see the moon. If you extend your arm to point at one edge of
the moon and then move your arm to point at the other edge of the moon, the angle
that your arm moves is 4€2. A close look at the metric shows that Da is simply
defined by the coefficients of the dQ2 term:

Dy = a(te)Sk(Dc) (8)
Back in geometry, the galaxy diameter was called the arc length and you may
recognize that Eqn. 7 in flat polar coordinates becomes ds = rd®.
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Similarly, the observed brightness of a source depends on how far away it is. Imagine
that you are looking at headlights in the distance on a dark night. As the headlights
get closer to you, you perceive them as brighter. The headlights don’t change their
luminosity, rather your observation of them changes. The observed brightness of a
source is characterized by the flux of photons into the aperture of a telescope during
the exposure time and has units of photons/(m? s). Since photons are emitted in all
directions, the fraction that make it into a fixed aperture at a distance, r, goes as the
inverse of a spherical surface, 1/4ar2. The brightness also depends on the intrinsic
luminosity of the source, defined by the total number of emitted photons/second in
all directions. The observed flux is related to the luminosity by the luminosity
distance, D;.

measured flux = true luminosity/(41D?) (9

The luminosity distance is constructed to make the equation look geometrical, but
since the photons spread out over a spherical area related to d€2 and are also
redshifted during transit, it depends both on the curvature of the universe and the
redshift.

Dy = Sx(Dc)/al(te) (10)

Finally, it is rare to measure a luminosity or flux directly. Astronomers usually work
with the logarithm of the flux and describe the brightness of a source by its
magnitude. The apparent magnitude, m, of a source is given by: (Ryden Eqn. 7.48)

D,
= — 11
m=M + 510g(10pc (11)

where M is the absolute magnitude and the second term is the distance modulus,
DM = 5log(D./ 10pc). Notice that the distance modulus depends only on the
luminosity distance which can be computed directly from the metric at any emission
time. A prediction of DM exists for every specific cosmological model of Sk(r) and
a(t.). Direct tests of the expansion have been made by measuring the apparent
magnitude for sources with known absolute magnitude and comparing the
difference, m - M, to the predicted distance modulus, DM. These tests lead to the
2011 Nobel Prize in Physics awarded to Saul Perlmutter, Brian Schmidt, and Adam
Riess [2].

Key point: All of these measurable quantities can be computed if we can just figure

out Ry, Hy, and a(t): two constants and function.

There are a few cases where the scale factor can be computed analytically and in this
part of the project it’s good to start with one of those. The solution for the Matter
Only universe (£2p= Qm,0=1) is

2 3
Holte = t5) =5 (a2 = 1) (12)
where Hois the Hubble constant. (note: Hois not a function of t.-t,, but rather, the left-
hand side is HyX(t, — t,).) The function is plotted as a dotted line in Ryden’s Figure

6.1. We will choose t,=now, and measure t., as a time in the past or future. Right now,
te=to, and the left-hand side is zero. What is a(now) so that the right-hand side is also
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zero? Let’s use a(t) to understand redshift, and the distance factors.

General Instructions: If you wish to do this assignment without the step-by-step
instructions, feel free to pick any computing language of your choice. Start by
defining the parameters Ho=70 km/s/Mpcand £=1, the constant, ¢, and conversions.
Since we want to get about 4 significant figures of accuracy out of this computation,
we need to use constants and conversions that are accurate to 6 significant figures as
shown in Table 1 below. Next, make an array of log(a) from -6 to 0.5, incrementing in
steps of 0.01 or so. Make additional arrays from the first to hold the values of g, z,
Ho(t.-t,). Debug the results using columns A-F in the spreadsheet shown in Figure 3
and by reproducing Figure 1. What is the age of the universe?

Next, integrate Eqn. 6 to find D.being very careful to set the integration limits from ¢, to
te. You may use a trapezoid method, Simpson’s method, or Romberg’s method. Set Dc=0
at toand then integrate backward to an emission time, t., in the past. Again, check that D¢
is correct using the spreadsheet in Figure 3. Next, find k and Ry so that you can compute
Sk(D¢). To check positive curvature: set Qo= 1.05 and check that Sk = 8275.94 Mpc where
log(a) =-6. Then set 0=0.95 and check that Sk= 8845.48 Mpc where log(a) = -6. Skip
ahead to page 8 where it says Report.

Excel Instructions: If you prefer more explanation and a detailed approach, here’s
how to do the computation in Excel.

A) Our first objective is to compute a(t). One way to do this is to use Eqn. 12 to find
an expression for a(te). In later calculations, it won’t be possible to do this, so we
want to get good at using Eqn.12 as is. The time scales of interest to us extend
from seconds to billions of years. To cover all the time scales of interest, start
with log(a) instead of a. Take a look at the example spreadsheet in Figure 3 to see
how the log(a) column should look. Create a spreadsheet column log(a). Compute
a from the log(a) and then use Eqn. 12 to compute Ho(te - to) from a. This should
produce columns A, B, and C in your spreadsheet. Check them by recreating the
line in Figure 1 for yourself.

B) Column D in the spreadsheet shown in Figure 3 is emission time, t., Itis easily
computed using Ho= 70 km/s/Mpc and the time right now, t, = 0 seconds. For
parameters, like Ho, you’ll want to put them in a cell at the top and use them in
equations. If you type them in all over the place, you'll have to debug the code
every time you change their value. If you don’t know how to anchor a number
in an equation, please get help. It's something every college student should
learn to do. Notice that the spreadsheet is color-coded. Blue cells are
computed with equations (they shouldn’t have any numbers typed in by hand).
Black cells are cells you have to enter by hand.
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Ryden Fig. 6.1

1 0.5 0 0.5 1 15 2 25 3
Ho(te-to)

Figure 1: Recreation of the dotted line in the lower panel of Ryden Fig. 6.1 for
the Matter Only universe.

C) Column E is the age of the universe in years. Notice that the emission time is
measured backward from now and that age is measured forward from the Big
Bang. If we start the age at 0 years, what is the age today?

D) Compute the redshift column using Eqn. 5.

E) We want to compute some more parameters and constants before tackling the
distance factors. It's important to use constants and conversion factors that are
accurate to 6 significant figures. See Table 1.

Go back and fix the conversions that you used in part C. They need to be
accurate. You'll also need to calculate the Hubble

Time, tn= 1/Ho, and the Hubble Distance, Du=c/Ho. So find a spot at the top to
pre-compute them. Check that you are using the constants and conversions
correctly using the color code. Blue cells should have equations that refer to
other cells. The black cells have all the input information needed.

speed of light 2.99792x10° km/s

Seconds/year (including leap seconds) 3.15581x10’

Mpc/km 3.24078x107

Table 1: Parameters and conversions with 6 significant figures.
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F)

The distance factors involve the integral shown in Eqn. 6. To compute the integral
numerically, we’ll find the area under the function, f{t)=c/a(t) where f{t) is
plotted on the y-axis. A schematic of this is shown in Figure 2.

0t t, b
The area of the shaded trapezoid above is

1) /(1) + 7(t)

2

2

Area = (l

Figure 2: Schematic used to describe numerical integration. Note that the y-axis of the

G)

plot is f(t).

Column G in the spreadsheet below is the area of each trapezoid formed by two y
values and two x values in a column. The time difference comes from Column D
and the scale factors come from Column B. Compute column G.

To integrate Eqn. 6, we need to add up the trapezoidal areas in column G between
our integration limits. This is where it gets tricky because we don’t want to start
at the beginning of the universe, but rather at the lower integration limit, which is
the current time, t,. We want D¢, the distance to be zero at the current time: put a
zero in the column H cell where t. = 0. This means that light emitted right now
is at zero distance from us. Now we’ll add the trapezoids above to find the
distance travelled by light emitted in the past. It's simplest if you have an
equation like H9 = H10+G9 in your spreadsheet. Make sure column H is correct.

Next we need to tackle the curvature which depends on Q. We will need to use
some IF() statements in Excel to compute k via Eqn. 4. These work by assigning
the cell to either the first or second value based on whether the logical test is true
or false: cell value=IF(logical_test, value_if_true, value_if false). In our case,
we're going to determine whether x is +1, 0, or -1 based on the value of Q.

k=IF(Qo=1, 0, IF(Qo>1,1, -1))

Look at this logic closely because one IF statement can only decide between two
choices. We need to nest two of them to decide between 3 choices. In the
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H)

)

spreadsheet below, N2 is set using the Excel equation:
=IF(N1=1,0,IF(N1>1,1,-1))

Curvature also has a characteristic radius of curvature, Ry. Go ahead and compute
itin cell N3. Don’t worry about the fact that you need to divide by zero when x=0.
For a flat universe, the curvature is infinite. This is probably the first time that
#DIV/0! is the right answer.

You'll need more IF statements to compute Sk(Dc) in column ]. Take a look at
Eqn. 3. The logic is:

Sk=IF( k=0, D, IF( k=+1, Rysin(Dc/Ry), Rosinh(D/Ro) ))

Debug the curvature terms, check that the Sk= Dc when Qo=1. Check positive
curvature: set (o= 1.05 and check that Sk = 8275.94 Mpc in the first bin, where
log(a) = -6. Then set 0=0.95 and check that Sk=8845.48 Mpc in the first bin,
where log(a) = -6.

When columns A-] are computed you're done with part 1! Congratulations.

Report: Recreate Figure 1 in your report. Write a few paragraphs explaining the
implications of the Einstein-deSitter universe. How old is this universe? How far
away is the edge of visibility? This is called the horizon distance and is defined by D¢
at the time of the Big Bang. Light emitted beyond this distance has not reached
planet Earth.

Include a plot of the conformal distance as a function of t. and another as a function
of the redshift from 0<z<4. What is the conformal distance computed here? Why
does it correlate with time and redshift?
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Part 2 — General Solution to the Friedman Equation

Barbara Ryden derives the Friedman Equation, the fluid equation, and the equation
of state in chapter 4. Together, they are solved in chapters 5 & 6. We will concentrate
here on the general solution: (Ryden Eqn. 6.8),

a te
da' ,
=H, | dt (13)
Q1’,0 O-m,o 12
1 \[a’z + < + QA‘OCL + (1 - Qo) to

where the history of the universe is embodied in the time, t., and the expansion scale
factor, a that is governed by the () parameters measured at their current epoch. This
equation includes the radiation, matter, and dark energy density as well as the
resulting curvature term (1 - (o). The right-hand side is easily integrated giving the

familiar H, ftto dt' = Hy(t, — ty). The left-hand side is more complicated and has no

nice analytical solution. Furthermore, it can’t be inverted into the form a(t) = f(t) like
the Einstein-DeSitter Universe. Be sure that you understand the derivation of

Eqgn. 13 and what it means. Once you trust the physics behind the equation, you can
use it to compute interesting facts about the universe.

General Instructions: Start with the same log(a) array as you did previously.
Compute g, and z as before. Next, numerically integrate the left-hand-side of Eqn. 13
and set it equal to Ho(t.-t,). Just like before, you’ll have to be careful with the
integration limits. Set a=1 when t.=to and then integrate backward to t. in the past.
Check that you get the results shown in Figure 4, column F for the Ryden’s
Benchmark cosmology. Recreate Figure 5 below.

When the general solution for a(t) is done, use it to compute the distance factors
from Part 1. This shouldn’t require you to re-code the distance factors. To avoid
problems you want to use the code from before because it’s already debugged. Just
replace the old Ho(t.-to) array with the new Ho(t.-to) array.

Excel Instructions:

A) Open the same Excel file that you've been using and insert a new sheet by clicking
on a new tab at the bottom of the page. Copy log(a) into it from the previous sheet.
Then compute a and z from log(a). Setup the parameters needed for the benchmark
cosmology. Now we need to compute the integral in Eqn 13. The integrand is:

1

fla) =

(14)

and we compute the area under this function as we did before by finding the area in a
series of trapezoids. Check your calculation using the example spreadsheet shown in
Figure 4. Compute Column F by summing all the trapezoidal areas. Be careful with
the integration limits; remember to add the areas into the past to find Ho(te-to). Set
Ho(te-to)=0 at te=tothen add the area of the trapezoids going upward in the table.

10
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- A ] B | C | D ] H | F

1 |General Solution to Friedman Equation Parameters

2 Omega_M 0.3

3 Omega_r 8.40E-05

4 Omega_Lambd 0.7

5 Omega_tot 1.000084

6 Ho 70

7

8

9

10 log(a) a z f(a) trap. area Ho(te-to)
11 -6 0.000001 995999 1.09E-04 2.57E-12 -9.64E-01
12 -5.99 1.0233E-06 977236.221 1.11E-04 2.69E-12 -9.64E-01
13 -5.98 1.0471E-06 954991.586 1.14E-04 2.81E-12 -9.64E-01
14 -5.97 1.0715E-06 933253.301 1.17E-04 2.95E-12 -9.64E-01
15 -5.96 1.0965E-06 912009.83% 1.19E-04 3.09E-12 -9.64E-01
16 -5.95 1.122E-06 891249.938 1.22E-04 3.23E-12 -9.64E-01
603 -0.1  0.79432823 0.25892541 1.10E+00 2.04E-02 -2.17E-01
604 -0.09_ 0.81283052_  0.23026877 1.10E+00 2.07E-02 -1.96€E-01
60 -0.08L 0.83176377] 0.20226443] 1.09E+00; =(B606-B605 )*0.5*%( D606 + D605 )|
606 -0.07] 0.85113804] 0.17489755] 1.08E+00 13E- -1.55€-
607 -0.06 0.87096355 0.14815362 1.07E+00 2.16E-02 -1.34E-01
608 -0.05 0.89125094 0.12201845 1.06E+00 2.19E-02 -1.12E-01
609 -0.04 0.91201084 0.0964782 1.05E+00 2.21E-02 -9.01E-02
610 -0.03 0.9332543 0.07151931 1.04E+00 2.24E-02 -6.80E-02
611 -0.02 0.95499255 0.04712855 1.02E+00 2.27E-02 -4,56E-02
612 -0.01 0.97723722 0.0232929% 1.01E+00 2.29E-02 -2.29E-02

13 0 1 0 1.00E+00 2.31E-02 0.00E+00
614 0.01 1.02329295 -0.0227628 9.87E-01 2.34E-02 2.31E-02
615 0.02 1.04712855 -0.0450074 9.74E-01 2.36E-02 4.65E-02
616 0.03 1.07151931 -0.0667457 9.61E-01 2.38E-02 7.01E-02
617 0.04 1.0964782 -0.0875892 9.47E-01 2.40E-02 9.39E-02
618 0.05 1.12201845 -0.1087491 9.33E-01 2.42E-02 1.18E-01
619 0.06 1.14815362 -0.1290364 9.19E-01 2.44E-02 1.42E-01
620 0.07 1.17489755 -0.148862 9.05E-01 2.46E-02 1.67E-01
621 0.08 1.20226443 -0.1682362 8.90E-01 2.47E-02 1.91E-01
622 0.09 1.23026877 -0.1871695 8.76E-01 2.49E-02 2.16E-01
623 0.1 1.25892541 -0.2056718 8.61E-01 2.50E-02 2.41E-01
'~ ¥ ] n 11 1 Mo0ansnce A AADTICIN © ATE N a CvE AN "N cee N

Figure 4: Spreadsheet showing the general solution to the Friedman Equation for the

B) Create another “Arbitrary” spreadsheet by copying the Einstein-deSitter

Benchmark Model.

spreadsheet into a new spreadsheet and relabeling the Ho(t.-to) column as shown in

Figure 5. Plots don’t copy correctly so don’t bring them along. The numbers in the
columns can be copied without changing anything! Now let’s hook the new

spreadsheet up to the General Solution. Set the Ho(t.-to) column equal to the general
solution from your previous spreadsheet as shown below. You'll also set Hoand Qoto
the value in the other spreadsheet.

To hook up a cell to another spreadsheet: click on the cell, enter =, click on the sheet
tab at the bottom to bring the other sheet forward, click on the cell you want and hit
enter. Go back to the original sheet and check that the cell points to the other sheet.

An example of this is shown in Figure 5 where all red cells are hooked up to the
spreadsheet containing the general solution to Friedman Equation. Whatever you

do, DON'T CHANGE ANY EQUATIONS! THEY ALREADY WORK! It may take you a few
tries, but when done properly, this part should take 2 or 3 minutes.
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J A | b mecw v | 4 | r | u | n [ J [
1 |Arbitrary Ho (km/s/Mpc) = 70 ¢ (km/s) = 2.99792E+05 Dy (Mpc) = 4.28E+03 Qp=1.000084
2| seconds/year= 3.15581E+07 ty (sec) = 4.41E+17 X = 1.00E+00
3 Mpc/km= 3.24078E-20 Ro= 467285.555
4 | time since
5| General Solution emission time Big Bang
6| log(a) a  Ho(te-to) te (sec) age (years) z(t) rap Area (Mpc) D. (Mpc)  D./Dy Sy (Mpc) Sy/Dy
e -6 0.000001 -0.9637249 -4,24821E+17  0.000E+00 999999 0.0109 138971083  3.2449” 13895.0598 3.2444
8 -599  1.02336-06  -0.9637249 -4,24821E+17 3.585€-02  977236.221 0.0111 138970975  3.2449"  13895.0490 3.2444
EN 598 1.0471E-06) ='General solution to Friegman'IF13 7.3396-02  954991.586 0.0114  13897.0864  3.24497 13895.0379 3.2444
10| 597 1.0715-06™ -0.0637249 BN LISy 1.1276-01 933253.3008 0.0116 138970750  3.2449" 13895.0265 3.2444
Al | -596  1.0965€-06  -0.9637249 -4,24821E+17 1.538E-01  912009.8394 0.0119  13897.0633  3.2449” 13895.0148 3.2444
12 -5.85  1122F-NA -N.GR37249 A 4RIF417 1.0RGF-N1 RAQ1240.03R1 n.n122 13RQ7.0514 324497 13R95.0079 12444

Figure 5: Computation for an arbitrary cosmology. Notice how the red values are

taken from the previous spreadsheet.

35
3 /I
2.5 /
g 2 )
© 1.5
0.5
\/\ G T
-1.5 -1 -05 0 0.5 1 1.5
Ho(te-to)

Figure 6: Scale factor as a function of time for
the Benchmark Model.

Report: The following can be done without modifying the columns of your
spreadsheet. From here on out you should just be changing the parameters in the
spreadsheet with the General Solution.

A. Benchmark Universe: Recreate Figure 6 in your report. Verify that you compute
the same age of the universe that Ryden computes in Table 6.2.

B. Now we’re ready to explore several different cosmologies. Make a table with the
following columns: name of cosmology, Ho, {lr,0, {lm,0, (a0, Qo, K, Ro, age of the
universe, horizon distance. Fill it in for the Benchmark cosmology.

C. Fill in the table for the A-Only and Matter-Only universes. The Matter-Only
universe is the Einstein-deSitter universe from Part 1. The numbers should

come out perfectly the same! Make sure they do.

D. Recreate the top panel in Ryden Fig. 6.6 and explain the implications of this plot.

12



Expansion History of the Universe

E. Another interesting universe is the Low-Density, Matter-Only universe. With so
much empty space in the universe, lets investigate a Matter-Only universe with o
= (m,0= 0.05. What is the curvature of this universe? Add it to your table of
universes. Why is this universe philosophically attractive? In the next few weeks
we will find out something surprising and exciting, that the low-density universe
is not the one that we actually live in. We are going to look at observations and
see that they differ from this universe. Add this universe to the plot from step D.
How does the proper distance compare to those in Ryden’s Figure 6.6?7

F. Where were you in 19987 Until 1998 it was believed that (4,0=0, and
astrophysicists focused their research on measuring (), to determine the
curvature of the universe. The scale factor a(t) was so poorly known that the
uncertainty in the age of the universe was about 50%, i.e. somewhere between 5
and 20 billion years. Today, the age of the universe is known to be 13.75 + 0.11
billion years. This precision is better than 1% and represents a giant leap in
knowledge about the origin of the universe. In just the past 14 years, the )
parameters have been measured with extreme precision. The latest parameters
can be found in Table 8 on page 39 of the WMAP paper published in January of
2010 [4]. We will use the parameters in the WMAP+BAO+Ho column. Please get
an electronic copy of the paper and have a look at it. What are {0m,0 and QA,0?

We have to be extra careful with the matter density because it is the sum of the
baryonic and dark mater. The two numbers in the table have different numbers
of significant figures. To find the sum with 3 significant figures, we have to sum
the “Physical” baryonic and dark matter density. To convert the sum from one to
the other, you need to know that h=Hy/100. You should find that Om,0=0.2722.

WMAP did not measure {1r,0 which was measured by the earlier COBE satellite
mission. The value used in the WMAP paper is {1r,0 = 8.42E-5. Add the WMAP
cosmology to your table. Add the WMAP cosmology to your table. How well does
your age agree with the age in the paper?

G. Ryden’s Benchmark model serves the important purpose of computing the
expansion history pretty well in light of the rapid changes in the field. This field is
active that every year more precise numbers are being published. It is impossible
to produce new editions of the book every time a paper is published. With this
code, you can always use the most current values as they become available.
Please comment on the percent difference in age and size between the
Benchmark and WMAP cosmologies. Can you expect the computations in the
textbook to be valid to a few percent?

H. Please include the tables and requested plots in your report. Write explanations
as needed to answer the various questions.
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Part 3 — Measuring the size of distant galaxies
1. The image below was extracted from the Galaxy Zoo Hubble project [6].

A) How big is this galaxy in its rest frame at the time it emitted the light captured
here in the Hubble telescope? (Please use the WMAP universe in from Part 2 to
answer the question. You can interpolate between the redshift values in the table to
find accurate distance factors. You'll need to use D¢ or Sk(D¢) with Eqns 7 & 8.)

B) How big is the satellite galaxy?

C) How far apart are the two galaxies?

D) How does the size of the large galaxy compare to the size of the Milky Way?

E) Does the Milky Way have any satellite galaxies? If so, how big are they?

Red (606 nm) Infrared (814 nm)

ID: AHZ10001ts
Survey: AEGIS

Survey reference: 12015686

Right ascension: 214.6653° as h:m:s
Declination: 52.6026° as d:m:s
Magnitude: 21.7837 £ 0.006

Kron radius: 4.6800

Redshift: 0.826600 [

View inverted image

:r—nde sc'alo: Click and drag to measure a region

View on AEGIS —
Search NED —

2. Now find a galaxy of your own and measure it. Go to the Galaxy Zoo Hubble
project [6]: http://www.galaxyzoo.org/. Classify 50 galaxies and as you do so,
investigate the ones that look interesting. To investigate the galaxy, you’ll have to
say that you want to discuss it. Find the redshift and angular scale for the image in
the detailed information available. Be careful with the redshift because there is also
a “z” light filter and numbers >2 are highly unlikely. Choose a galaxy with a z>0.1.

A) Include a screen shot of the galaxy and it’s information in your report.

B) How big is the galaxy at the time it emitted the light captured by the telescope?
C) How does it compare to the Milky Way galaxy? How does it compare to other
galaxies in the Local Group of galaxies, like the Large and Small Magellanic Clouds?
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Part 4 — Observable Astronomical Quantities

In parts 1 and 2, we computed age and distance in the universe. However, to relate it
to measurements, we need to use detection equipment. There is no wooden meter
stick to measure Mpc distances or stopwatch to tell us the passage of billions of
years. The piece of equipment we use to learn about the universe is a telescope. It
collects light. Please go back and reread the paragraphs related to Equations 7-11 to
understand how the geometry of the universe affects the observed brightness and
angular extent on the sky. The angular diameter distance, luminosity distance and
distance modulus need to be added to your computation so that you can plot them.

General instructions: Open up your “Arbitrary” spreadsheet or program and
compute the angular diameter distance and the luminosity distance normalized by
the Hubble Distance. The Hubble Distance, Du = ¢/Ho, should be pre-computed at the
top of your spreadsheet. You'll also need to compute the distance modulus. Use
Figure 4 to debug columns K-N. Figure 7 shows how the distance factors depend on
redshift in the Einstein-DeSitter Universe.

Report: Recreate Figure 7 for the Einstein-DeSitter and Benchmark Universes. Do
galaxies appear smaller at greater redshifts? Explain carefully using Eqn. 7 and the
plots. Does the measured brightness go down for objects at greater redshifts?
Explain using Eqn. 9 and the plots. Does this universe continue to expand forever or
does it start to contract at some time in the future?

1.2000 - 0.35 -
k2l Hogg Fig. 1 3 Hogg Fig. 2
T 1.0000 o 03
@ =2
T 0.8000 oz
E § 0.2
£ 0.6000 k]
S ; 0.15
2 0.4000 1
| g 0.1
o
2 0.2000 S g.0s
= =2
2 0.0000 & 0
0 1 2 3 4 5 ] 0 1 2 3 4 5
redshift z redshift z
2 Hogg Fig. 3 ., 19.000 ' Hogg Fig.- 4
e’ = a7.000
2 S
24 T 45.000
g 3 g 43.000
-l
z, g 41.000
s o
E . E 39.000
£ T 37.000
0 35.000
0 1 2 3 4 5 0 1 2 3 a 5
redshift z redshift z

Figure 7: Plots of observational distance factors in the Einstein-DeSitter universe.
These are recreations of Figures in reference [3] by David Hogg.
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Part 5 — Ruling out the Low-density and Matter-only universes

Ryden’s Figure 7.5 shows how data are used to constrain the parameters of the
theory that models the expansion of the universe. Many new type Ia supernovae
have been discovered since 1999. The most recent presentation of these data are in
Figure 9 on page 19 in reference [5].

A.

B.

Explain the differences between the Ryden’s Figure 7.5 and Figure 9 in the new
supernova paper.

Use all 5 cosmologies explored in Part 1 to create theory curves for the upper
panel in Figure 9 in reference [5]. (This problem shouldn’t require any additional
coding. You can copy and paste results from your spreadsheest into a new
spreadsheet for plotting.)

Subtract the other theory predictions from the WMAP prediction to recreate the
lower panel in Figure 9 of reference [5].

Theoretical predictions exist for many things that do not actually exist. The data
tell us what actually exists. Which of the theories we’ve explored are NOT
consistent with this data set? How do you feel about saying that the data rule out
these possibilities?

References:

B. Ryden, Introduction to Cosmology, Addison Wesley, (2004).
http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/

D.W. Hogg, Distance measures in cosmology, (2000),
http://arxiv.org/abs/astroph/9905116.

WMAP collaboration, Seven-Year Wilkinson Microwave Anisotropy Probe
Observations: Sky Maps, Systematic Errors, and Basic Results, Jarosik, et.al.,, (2011)
Ap]S, 192, 14; http://arxiv.org/abs/1001.4744.

R. Amanullah, et al. (Supernova Cosmology Project), Spectra and Light Curves of
Six Type la Supernovae at 0.511 < z < 1.12 and the Union2 Compilation, accepted
for publication in Astrophysical Journal (2010). http://arxiv.org/abs/1004.1711 .
C.J. Lintott, et al., Galaxy Zoo: Morphologies derived from visual inspection of
galaxies from the Sloan Digital Sky Survey, Mon. Not. Roy. Astron. Soc. 389:1179,
(2008), www.galazyzoo.org, www.sdss.org.

16



