Collaborators

DASI Team University of Chicago J. E. Carlstrom M. Dragovan N. W. Halverson W. L. Holzapfel J. Kovac E. M. Leitch C. Pryke E. Schartman G. Davidson J. Yamasaki

CBI Team

Caltech

A. C. S. Readhead

S. Padin

J. Cartwright

T. Pearson

W. Schaal

M. Shepherd

J. Yamasaki

Also

M. White (UIUC) M. Joy (MSFC) S. Myers (NRAO)

Overview

- 13-element, compact cm-wave interferometer
- 10 GHz band from 26-36 GHz
- Largest separation of 115 | smallest scale of 1 ~ 900
- Smallest separation of 20 | largest scale of 1
 ~ 160
- Multi-frequency capability allows spectral discrimination of foregrounds

Receivers

- 20 cm feed horns
 - Unobstructed apertures
 - Low sidelobe response
 - Low crosstalk
- ~ 3 degree beam
- Lens + feed horn yield an aperture efficiency of 84%
- Ka-Band HEMTs between 26-36 GHz
 - Tnoise typically 14 K at band center
 - Trx ranges 18-25 K

DASI Mount

- Standard alt-az mount, alt axis counter-weighted for stability
- 13 antenna elements, 78 baselines
- Rigid faceplate mount
 - No IF delays
 - No change in projected baseline lengths while tracking

Fourier plane characteristics

- 3-fold symmetry improves sensitivity at each UV radius
- Hole pattern optimized for uniform UV coverage

Image plane characteristics

- Snapshot provides good coverage of the UV plane
- 10-channel correlator allows spectral discrimination or frequency synthesis
- Synthesized beam ~ 18 arcminutes.

Pointing

- Pointing model determined by optical observations
- Pointing rms of 19 arcsec with stars down to 5th magnitude
- Periodic checks with VME frame grabber
- Small diurnal temperature variations and weight of the telescope contribute to extremely stable pointing
- Pointing checks incorporated into observing strategy

Site characterization

- Very low precipitation typical zenith opacities ~ 0.02
- Observations 6 months later from skydips demonstrate extreme stability of the site
- Python results suggest 75% efficiency
- Measured zenith opacity indicates that winter atmosphere contributes no more than the CMB to our system temperature.

DASI first light; fringes on the sun

DASI first image: the moon

Absolute Calibration

- Very few suitable high frequency calibrators
- DASI has low sensitivity to point sources:
 Gain of ~10 uK/Jy
- Extended sources ok, especially at the pole
 - Modulo deck rotation
- Eta Carinae extended Galactic HII region
 - High elevation
 - Peak flux ~ 600 Jy
 - Can measure flux to ~ 3% in minutes

Eta Carinae visibility amplitudes

 $\theta_{dk} = 0$

RCW38 visibility amplitudes

RCW38 9-Feb-2000

UV Radius

Phase stability while tracking RCW38

- Stability confirms that RCW38 is point-like or at least radially symmetric
- Galactic background in the vicinity of RCW38 is uniform
- No significant pointing offsets
- Excellent instrumental stability

Evidence for ground contamination while tracking Eta Carinae

120

28

30

- Comparison between redundant baselines
- Large variations on short baselines
- Small scatter on long baselines
- Consistent with ground contamination

34

32

²⁷GHz

36

Ground signal in raw visibilities

- Blank field tracked over full azimuth range
- Rapid fringing on shortest baselines
- Little evidence for contamination on long baselines
- Large signal corresponds to MaPo

Frame-based editing on all baselines

Repeatability of ground signals

- Large signal corresponds to MaPo crossing
- Good repeatability over long time periods (5 days)
- Difference plot shows no evidence for residual ground contamination

CMB Field Observations

- Observe sets of 8 fields over the same azimuth range
- 8 fields as a suitable compromise between SNR on the ground signal, observing time and sample variance
- Azimuth ranges chosen to avoid obvious sources of interference
- 2 hours of observation on each field in 24 hours

$$\chi^2 = \sum_{i=1}^{12} \frac{(x_i - \overline{x})^2}{\frac{7}{8}\sigma^2(x_i)}$$

$$\overline{x} = \frac{1}{12} \sum_{i=1}^{12} x_i \qquad \sigma(\overline{x}) = \sqrt{\frac{1}{11.12} \sum_{i=1}^{12} (x_i - \overline{x})^2} \qquad Ratio = \frac{\overline{x}}{\sigma(\overline{x})}$$

Channel Mean/Standard-error distributions

100

/ndf 19.86 / 27

x/ndf 52.26 / 29

Channel Mean/Standard-error distributions

/ndf 33.80 / 29

/ndf 21.29 / 28

$$\overline{x_1} = \frac{1}{6} \sum_{i=1}^{6} x_i$$
 $\overline{x_2} = \frac{1}{6} \sum_{i=7}^{12} x_i$ $Ratio = \frac{\overline{x_1} - \overline{x_2}}{2\sigma(\overline{x})}$

CMB A fields, no ground subtraction

h22661 at 31,000 GHz 2000 May 64

2000 3020 1023 0 −1020 −2020 − Right Assembles (controls) way server with an encode, use −50 00 +0000 (control) Diphydringer, CHE-02 6 (control) control -server - server - server server server - s

001 at 21,000 GHz 2000

2003 3000 100 0 −100 −300 Pipti Assession, (mmth) Nap tensis mi az 10 telazo, (mt - se es +sess (mmth) Diptivel report -telh-04 + 484-49 (g/term

300 200 100 0 -103 -2003 日月は14 Annuality (mm/ht) Help sector Net 20 Bio Tation, pain - for 8 Annual (2003) Help get cargo - ナスト・オオ - 555-455 (2014)

300 200 100 0 -100 -200 Right Anormalias (arcmis) Nay cartier Nr. M 69 MURDI. Nec. +1 00 40 040 (2004) displayst mayor -1,200-041 2-2004-03 (2004)

Gual mag, Arroy DV31

Pight Anvention (country) Nep series: Re 05: 80 Matrix, Sec. -41 (0) Matrix (2004) departer regin --sam-on + acce-on p/sem

-108 -201 1 202 401 202 801

editori muja denaji (MS) Lati da Stano dia Stan da di

Hight Ascention (around) tip enter: The ED M 07:40. Dec.-Hi to 11:200 (2000) tip enter: The ED M 07:40. Dec.-Hi to 11:200 (2000) tip enter and the state-to (ghave)

bedeber) comp. Anneys DADI Ballet et 31.000 SHz 2000 May D4

Hight Accuration (promin) Representation (RV BL 97/274), Date —41 (91 (15:46 (2003/2)) Object maps —420—31 + 1.780—63-4/3600

-soit i and si usit

CMB A fields, ground subtracted

doel corp. Array: D43 A reading of the second

.

Arrest DAR

Comparison of data from different bands

Residual map. Array: DASI h22d61 at 30.214 GHz 2000 May 03

Residual map. Array: DASI h22d61 at 31.214 GHz 2000 May 03

Comparison of data from different azimuth ranges

Residual map. Array: DASI

h22d61 at 31.000 GHz 2000 May 04

Residual map. Array: DASI h22d61 at 31.000 GHz 2000 May 03

Error on Binned Power Spectrum Estimates

- Note: this is NOT a measured power spectrum.
- (top) Current status: power spectrum errors for A + B fields, 48 hours per field.
- (bottom) Power spectrum errors as of September
- Error estimates include realistic correlations, actual data scatter.

