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ABSTRACT

We present limits to the amplitude of non-Gaussian primordial fluctuations in the WMAP 1 yr cosmic
microwave background sky maps. A nonlinear coupling parameter, fNL, characterizes the amplitude of a
quadratic term in the primordial potential. We use two statistics: one is a cubic statistic which measures phase
correlations of temperature fluctuations after combining all configurations of the angular bispectrum. The
other uses the Minkowski functionals to measure the morphology of the sky maps. Both methods find the
WMAP data consistent with Gaussian primordial fluctuations and establish limits,�58 < fNL < 134, at 95%
confidence. There is no significant frequency or scale dependence of fNL. The WMAP limit is 30 times better
than COBE and validates that the power spectrum can fully characterize statistical properties of CMB
anisotropy in the WMAP data to a high degree of accuracy. Our results also validate the use of a Gaussian
theory for predicting the abundance of clusters in the local universe. We detect a point-source contribution to
the bispectrum at 41 GHz, bsrc ¼ ð9:5� 4:4Þ � 10�5 lK3 sr2, which gives a power spectrum from point
sources of csrc ¼ ð15� 6Þ � 10�3 lK2 sr in thermodynamic temperature units. This value agrees well with
independent estimates of source number counts and the power spectrum at 41 GHz, indicating that bsrc
directly measures residual source contributions.

Subject headings: cosmic microwave background — cosmology: observations — early universe —
galaxies: clusters: general — large-scale structure of universe

1. INTRODUCTION

The Gaussianity of the primordial fluctuations is a key
assumption of modern cosmology, motivated by simple
models of inflation. Statistical properties of the primordial
fluctuations are closely related to those of the cosmic micro-
wave background (CMB) radiation anisotropy; thus, a
measurement of non-Gaussianity of the CMB is a direct test
of the inflation paradigm. If CMB anisotropy is Gaussian,
then the angular power spectrum fully specifies the
statistical properties. Recently, Acquaviva et al. (2002) and
Maldacena (2002) have calculated second-order perturba-
tions during inflation to show that simple models based
upon a slowly rolling scalar field cannot generate detectable
non-Gaussianity. Their conclusions are consistent with pre-
vious work (Salopek & Bond 1990, 1991; Falk, Rangarajan,
& Srednicki 1993; Gangui et al. 1994). Inflation models that
have significant non-Gaussianity may have some complex-

ity such as non-Gaussian isocurvature fluctuations (Linde
& Mukhanov 1997; Peebles 1997; Bucher & Zhu 1997), a
scalar-field potential with features (Kofman et al. 1991;
Wang & Kamionkowski 2000), or ‘‘ curvatons ’’ (Lyth &
Wands 2002; Lyth, Ungarelli, & Wands 2002). Detection or
nondetection of non-Gaussianity thus sheds light on the
physics of the early universe.

Many authors have tested the Gaussianity of CMB aniso-
tropy on large angular scales (�7�) (Kogut et al. 1996;
Heavens 1998; Schmalzing & Gorski 1998; Ferreira,
Magueijo, & Górski 1998; Pando, Valls-Gabaud, & Fang
1998; Bromley & Tegmark 1999; Banday, Zaroubi, &
Górski 2000; Contaldi et al. 2000; Mukherjee, Hobson,
& Lasenby 2000; Magueijo 2000; Novikov, Schmalzing, &
Mukhanov 2000; Sandvik & Magueijo 2001; Barreiro et al.
2000; Phillips & Kogut 2001; Komatsu et al. 2002; Komatsu
2001; Kunz et al. 2001; Aghanim, Forni, & Bouchet 2001;
Cayón et al. 2003), on intermediate scales (�1�) (Park et al.
2001; Shandarin et al. 2002), and on small scales (�100)
(Wu et al. 2001; Santos et al. 2002; Polenta et al. 2002).
So far there is no evidence for significant cosmological
non-Gaussianity.

Most of the previous work only tested the consistency
between the CMB data and simulated Gaussian realizations
without having physically motivated non-Gaussian models.
They did not, therefore, consider quantitative constraints
on the amplitude of possible non-Gaussian signals allowed
by the data. On the other hand, Komatsu et al. (2002),
Santos et al. (2002), and Cayón et al. (2003) derived
constraints on a parameter characterizing the amplitude of
primordial non-Gaussianity inspired by inflation models.
The former and the latter approaches are conceptually dif-
ferent; the former does not address how Gaussian the CMB
data are or the physical implication of the results.
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In this paper, we adopt the latter approach and constrain
the amplitude of primordial non-Gaussianity in theWMAP
1 yr sky maps.

Some previous work all had roughly similar sensitivity to
non-Gaussian CMB anisotropy at different angular scales,
because the number of independent pixels in the maps are
similar, i.e., ’4000–6000 for COBE (Bennett et al. 1996),
QMASK (Xu, Tegmark, & de Oliveira-Costa 2002), and
MAXIMA (Hanany et al. 2000) sky maps. Polenta et al.
(2002) used about 4� 104 pixels from the BOOMERanG
map (de Bernardis et al. 2000), but found no evidence for
non-Gaussianity. The WMAP provides about 2:4� 106

pixels (outside the Kp0 cut) uncontaminated by the Galactic
emission (Bennett et al. 2003a), achieving more than 1 order
of magnitude improvement in sensitivity to non-Gaussian
CMB anisotropy.

This paper is organized as follows. In x 2, we describe our
methods for measuring the primordial non-Gaussianity
using the cubic (bispectrum) statistics and the Minkowski
functionals, and we present the results of the measurements
of theWMAP 1 yr sky maps. Implications of the results for
inflation models and the high-redshift cluster abundance are
then presented. In x 3, we apply the bispectrum to individual
frequency bands to estimate the point-source contribution
to the angular power spectrum. The results from the
WMAP data are then presented, and also comparison
among different methods. In x 4, we present summary of our
results. In Appendix A, we test our cubic statistics for the
primordial non-Gaussianity using non-Gaussian CMB sky
maps directly simulated from primordial fluctuations. In
Appendix B, we test our cubic statistic for the point sources
using simulated point-source maps. In Appendix C, we cal-
culate the CMB angular bispectrum generated from features
in a scalar-field potential.

2. LIMITS ON PRIMORDIAL NON-GAUSSIANITY

2.1. TheWMAP 1 yr SkyMaps

We use a noise-weighted sum of the Q1, Q2, V1, V2,
W1, W2, W3, and W4 maps. The maps are created in the
HEALPix format with nside ¼ 512 (Górski, Hivon, &
Wandelt 1998), having the total number of pixels of
12� nside2 ¼ 3; 145; 728. We do not smooth the maps to a
common resolution before forming the co-added sum. This
preserves the independence of noise in neighboring pixels, at
the cost of complicating the effective window function for
the sky signal. We assess the results by comparing the
WMAP data to Gaussian simulations processed in identical
fashion. Each CMB realization draws a sample from the
�CDM cosmology with the power-law primordial power
spectrum fit to the WMAP data (Hinshaw et al. 2003b;
Spergel et al. 2003). The cosmological parameters are in
Table 1 of Spergel et al. (2003) (we use the best-fit ‘‘WMAP
data only ’’ parameters). We copy the CMB realization and
smooth each copy with theWMAP beam window functions
of the Q1, Q2, V1, V2, W1, W2, W3, and W4 (Page et al.
2003a). We then add independent noise realizations to each
simulated map and co-add weighted by Nobs=�

2
0, where the

effective number of observations Nobs varies across the sky.
The values of the noise variance per Nobs, �

2
0, are tabulated

in Table 1 of Bennett et al. (2003b).
We use the conservative Kp0 mask to cut the Galactic

plane and known point sources, as described in Bennett

et al. (2003a), retaining 76.8% of the sky (2,414,705 pixels)
for the subsequent analysis. In total 700 sources are masked
on the 85% of the sky outside the Galactic plane in all bands;
thus, the number density of masked sources is 65.5 sr�1. The
Galactic emission outside the mask has visible effects on
the angular power spectrum (Hinshaw et al. 2003b). Since
the Galactic emission is highly non-Gaussian, we need to
reduce its contribution to our estimators of primordial non-
Gaussianity. Without foreground correction, both the
bispectrum and the Minkowski functionals find strong
non-Gaussian signals. We thus use the foreground template
correction given in x 6 of Bennett et al. (2003c) to reduce
foreground emission to negligible levels in the Q, V, and W
bands. The method is termed as an ‘‘ alternative fitting
method,’’ which uses only the Q, V, and W band data. The
dust component is separately fitted to each band without
assuming spectrum of the dust emission (three parameters).
We assume that the free-free emission has a ��2.15 spectrum,
and the synchrotron has a ��2.7 spectrum. The amplitude of
each component in the Q band is then fitted across three
bands (two parameters).

2.2. Methodology

2.2.1. Model for Primordial Non-Gaussianity

We measure the amplitude of non-Gaussianity in
primordial fluctuations parameterized by a nonlinear cou-
pling parameter, fNL (Komatsu & Spergel 2001). This
parameter determines the amplitude of a quadratic term
added to the Bardeen curvature perturbations � (�H in
Bardeen 1980), as

�ðxÞ ¼ �LðxÞ þ fNL �2
LðxÞ � h�2

LðxÞi
� �

; ð1Þ

where�L are Gaussian linear perturbations with zero mean.
Although the form in equation (1) is inspired by simple
inflation models, the exact predictions from those inflation
models are irrelevant to our analysis here because the pre-
dicted amplitude of fNL is much smaller than our sensitivity;
however, this parameterization is useful to find quantitative
constraints on the amount of non-Gaussianity allowed by
the CMB data. Equation (1) is general in that fNL param-
eterizes the leading-order nonlinear corrections to �. We
discuss the possible scale-dependence in Appendix C.

Angular bispectrum analyses found fNLj j < 1500 (68%)
from the COBE DMR 53+90 GHz co-added map
(Komatsu et al. 2002) and fNLj j < 950 (68%) from the
MAXIMA sky map (Santos et al. 2002). The skewness mea-
sured from the DMR map smoothed with filters, called the
Spherical Mexican Hat wavelets, found fNLj j < 1100 (68%)
(Cayón et al. 2003), although they neglected the integrated
Sachs-Wolfe effect in the analysis, and therefore under-
estimated the cosmic variance of fNL. BOOMERanG did
not measure fNL in their analysis of non-Gaussianity
(Polenta et al. 2002). The rms amplitude of � is given by
h�2i1=2 ’ h�2

Li
1=2 1þ f 2NLh�2

Li
� �

. Since h�2i1/2 measured on
the COBE scales through the Sachs-Wolfe effect is
h�2i1=2 ¼ 3hDT2i1=2=T ’ 3:3� 10�5 (Bennett et al. 1996),
one obtains f 2NLh�2

Li < 2:5� 10�3 from theCOBE 68% con-
straints; thus, we already know that the contribution from
the nonlinear term to the rms amplitude is smaller than
0.25%, and that to the power spectrum is smaller than 0.5%.
This amplitude is comparable to limits on systematic errors
of the WMAP power spectrum (Hinshaw et al. 2003a) and
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needs to be constrained better in order to verify the analysis
of the power spectrum.

2.2.2. Method 1: The Angular Bispectrum

Our first method for measuring fNL is a ‘‘ cubic statistic ’’
that combines nearly optimally all configurations of the
angular bispectrum of the primordial non-Gaussianity
(Komatsu, Spergel, & Wandelt 2003). The bispectrum
measures phase correlations of field fluctuations. We com-
pute the spherical harmonic coefficients a‘m of temperature
fluctuations from

a‘m ¼
Z

d2n̂nMðn̂nÞ DTðn̂nÞ
T0

Y�
‘mðn̂nÞ ; ð2Þ

where Mðn̂nÞ is a pixel-weighting function. Here Mðn̂nÞ is the
Kp0 sky cut where Mðn̂nÞ takes 0 in the cut region and 1
otherwise. We filter the measured a‘m in ‘-space and trans-
form it back to compute two new maps, Aðr; n̂nÞ and Bðr; n̂nÞ,
given by

Aðr; n̂nÞ �
X‘max

‘¼2

X‘

m¼�‘

�‘ðrÞb‘
~CC‘

a‘mY‘mðn̂nÞ ; ð3Þ

Bðr; n̂nÞ �
X‘max

‘¼2

X‘

m¼�‘

�‘ðrÞb‘
~CC‘

a‘mY‘mðn̂nÞ : ð4Þ

Here ~CC‘ � C‘b
2
‘ þN, where C‘ is the CMB anisotropy, N is

the noise bias, and b‘ is the beam window function describ-
ing the combined smoothing effects of the beam (Page et al.
2003a) and the finite pixel size. The functions �‘ðrÞ and �‘ðrÞ
are defined by

�‘ðrÞ �
2

�

Z
k2dkgT‘ðkÞj‘ðkrÞ ; ð5Þ

�‘ðrÞ �
2

�

Z
k2dkPðkÞgT‘ðkÞj‘ðkrÞ ; ð6Þ

where r is the comoving distance. These two functions con-
stitute the primordial angular bispectrum and correspond
to �‘ðrÞ ¼ f �1

NLb
NL
‘ ðrÞ and �‘ðrÞ ¼ bL‘ ðrÞ in the notation of

Komatsu & Spergel (2001). We compute the radiation
transfer function gT‘ðkÞwith a code based upon CMBFAST
(Seljak & Zaldarriaga 1996) for the best-fit cosmological
model of theWMAP 1 yr data (Spergel et al. 2003). We also
use the best-fit primordial power spectrum of �, PðkÞ. We
then compute the cubic statistic for the primordial non-
Gaussianity, Sprim, by integrating the two filtered maps over
r as (Komatsu et al. 2003)

Sprim ¼ m�1
3

Z
4�r2dr

Z
d2n̂n

4�
Aðr; n̂nÞB2ðr; n̂nÞ ; ð7Þ

where the angular average is done on the full sky regardless
of sky cut, and m3 ¼ ð4�Þ�1 R d2n̂nM3ðn̂nÞ is the third-order
moment of the pixel-weighting function. When the weight is
only from a sky cut, as is the case here, we have m3 ¼ fsky,
i.e., m3 is the fraction of the sky covered by observations
(Komatsu et al. 2002). Komatsu et al. (2003) show that B is
a Wiener-filtered map of the underlying primordial fluctua-
tions, �. The other map A combines the bispectrum con-
figurations that are sensitive to nonlinearity of the form in
equation (1). Thus, Sprim is optimized for measuring the
skewness of � and picking out the quadratic term in
equation (1).

Finally, the nonlinear coupling parameter fNL is given by

fNL ’
X‘max

‘1�‘2�‘3

ðBprim
‘1‘2‘3

Þ2

C‘1C‘2C‘3

" #�1

Sprim ; ð8Þ

where B
prim
‘1‘2‘3

is the primordial bispectrum (Komatsu &
Spergel 2001) multiplied by b‘1b‘2b‘3 and computed for
fNL ¼ 1 and the best-fit cosmological model. This equation is
used to measure fNL as a function of the maximummultipole
‘max. The statistic Sprim takes only N3=2 operations to com-
pute without loss of sensitivity, whereas the full bispectrum
analysis takes N5=2 operations. It takes about 4 minutes on
16 processors of an SGI Origin 300 to compute fNL from a
sky map at the highest resolution level, nside ¼ 512. We
measure fNL as a function of ‘max. Since there is little CMB
signal compared with instrumental noise at ‘ > 512, we shall
use ‘max ¼ 512 at most; thus, nside ¼ 256 is sufficient, speed-
ing up evaluations of fNL by a factor of 8 as the computa-
tional timescales as ðnsideÞ3. The computation takes only 30 s
at nside ¼ 256. Note that since we are eventually fitting for
two parameters, fNL and bsrc (see x 3), we include covariance
between these two parameters in the analysis. The covariance
is, however, small (see Fig. 8 in Appendix A).

While we use uniform weighting for Mðn̂nÞ, we could
instead weight by the inverse noise variance per pixel,
Mðn̂nÞ ¼ N�1ðn̂nÞ; however, this weighting scheme is subopti-
mal at low ‘ where the CMB anisotropy dominates over
noise so that the uniform weighing is more appropriate. For
measuring bsrc, on the other hand, we shall use a slightly
modified version of the N�1 weighting, as bsrc comes
mainly from small angular scales where instrumental noise
dominates.

2.2.3. Method 2: TheMinkowski Functionals

Topology offers another test for non-Gaussian features in
the maps, measuring morphological structures of fluctua-
tion fields. The Minkowski functionals (Minkowski 1903;
Gott et al. 1990; Schmalzing & Gorski 1998) describe the
properties of regions spatially bounded by a set of contours.
The contours may be specified in terms of fixed temperature
thresholds, � ¼ DT=�, where � is the standard deviation of
the map, or in terms of the area. Parameterization of con-
tours by threshold is computationally simpler, while param-
eterization by area reduces correlations between the
Minkowski functionals (Shandarin et al. 2002). We use a
joint analysis of the three Minkowski functionals [area
Að�Þ, contour length Cð�Þ, and genus Gð�Þ] explicitly
including their covariance; consequently, we work in the
simpler threshold parameterization.

The Minkowski functionals are additive for disjoint
regions on the sky and are invariant under coordinate trans-
formation and rotation. We approximate each Minkowski
functional using the set of equal-area pixels hotter or colder
than a set of fixed temperature thresholds. The fractional
area

Að�Þ ¼ 1

A

X
i

ai ¼
N�

Ncut
ð9Þ

is thus the number of enclosed pixels, N�, divided by the
total number of pixels on the cut sky, Ncut. Here ai is
the area of an individual spot, and A is the total area of the
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pixels outside the cut. The contour length

Cð�Þ ¼ 1

4A

X
i

Pi ð10Þ

is the total perimeter length of the enclosed regions Pi, while
the genus

Gð�Þ ¼ 1

2�A
ðNhot �NcoldÞ ð11Þ

is the number of hot spots, Nhot, minus the number of cold
spots, Ncold. We calibrate finite pixelization effects by com-
paring the Minkowski functionals for the WMAP data to
Monte Carlo simulations.

The WMAP data are a superposition of sky signal and
instrument noise, each with a different morphology. The
Minkowski functionals transform monotonically
(although not linearly) between the limiting cases of a
sky signal with no noise and a noise map with no sky sig-
nal. Unlike spatial analyses such as Fourier decomposi-
tion, different regions of the sky cannot be weighted by
the signal-to-noise ratio, nor does the noise ‘‘ average
down ’’ over many pixels. The choice of map pixelization
becomes a trade-off between resolution (favoring smaller
pixels) versus signal-to-noise ratio (favoring larger pixels).
We compute the Minkowski functionals at nside ¼ 16
through 256 (3072 to 786,432 pixels on the full sky). We
use the WMAP Kp0 sky cut to reject pixels near the
Galactic plane or contaminated by known sources. The
cut sky has 1433 pixels at resolution nside ¼ 16 and
666,261 pixels at nside ¼ 256.

We compute the Minkowski functionals at 15 thresholds
from �3.5 � to +3.5 � and compare each functional to the
simulations using a goodness-of-fit statistic,

�2 ¼
X
�1�2

½Fi
WMAP � hFi

simi	�1�
�1
�1�2

½Fi
WMAP � hFi

simi	�2 ; ð12Þ

where Fi
WMAP is a Minkowski functional from the WMAP

data (the index i denotes a kind of functional), hFi
simi is

the mean from theMonte Carlo simulations, and��1�2 is the
bin-to-bin covariance matrix from the simulations.

2.3. Monte Carlo Simulations

Monte Carlo simulations are used to estimate the statisti-
cal significance of the non-Gaussian signals. One kind of
simulation generates Gaussian random realizations of
CMB sky maps for the angular power spectrum, window
functions, and noise properties of the WMAP 1 yr data.
This simulation quantifies the uncertainty arising from
Gaussian fields, or the uncertainty in the absence of
non-Gaussian fluctuations. The other kind generates non-
Gaussian CMB sky maps from primordial fluctuations of
the form of equation (1) (see Appendix A for our method
for simulating non-Gaussian maps). This simulation quan-
tifies the uncertainty more accurately and consistently in the
presence of non-Gaussian fluctuations.

In principle, one should always use the non-Gaussian
simulations to characterize the uncertainty in fNL; how-
ever, the uncertainty estimated from the Gaussian
realizations is good approximation to that from the non-
Gaussian ones as long as fNLj j < 500. Our non-Gaussian
simulations verify that the distribution of fNL and bsrc
around the mean is the same for Gaussian and non-

Gaussian realizations (see Fig. 8 in Appendix A for an
example of fNL ¼ 100). The Gaussian simulations have
the advantage of being much faster than the non-
Gaussian ones. The former takes only a few seconds to
simulate one map, whereas the latter takes 3 hours on a
single processor of an SGI Origin 300. Also, simulating
non-Gaussian maps at nside ¼ 512 requires 17 GB of
physical memory. We therefore use Gaussian simulations
to estimate the uncertainty in measured fNL and bsrc.

2.4. Limits to Primordial Non-Gaussianity

Figure 1 shows fNL measured from the Q+V+W co-
added map using the cubic statistic (eq. [8]), as a function of
the maximum multipole ‘max. We find the best estimate of
fNL ¼ 38� 48 (68%) for ‘max ¼ 265. The distribution of fNL

is close to a Gaussian, as suggested by Monte Carlo simula-
tions (see Fig. 8 in Appendix A). The 95% confidence inter-
val is �58 < fNL < 134. There is no significant detection of
fNL at any angular scale. The rms error, estimated from 500
Gaussian simulations, initially decreases as / ‘�1

max,
although fNL for ‘max ¼ 265 has a smaller error than that for
‘max ¼ 512 because the latter is dominated by the instru-
mental noise. Since all the pixels outside the cut region are
uniformly weighted, the inhomogeneous noise in the map
(pixels on the ecliptic equator are noisier than those on the
north and south poles) is not accounted for. This leads to a
noisier estimator than a minimum variance estimator. The
constraint on fNL for ‘max ¼ 512 will improve with more
appropriate pixel-weighting schemes (Heavens 1998; Santos
et al. 2002). The simple inverse noise (N�1) weighting makes
the constraints much worse than the uniform weighting, as
it increases errors on large angular scales where the CMB
signal dominates over the instrumental noise. The uniform
weighting is thus closer to optimal. Note that for the power
spectrum, one can simply use the uniform weighting to
measure C‘ at small ‘ and the N�1 weighting at large ‘. For

Fig. 1.—Nonlinear coupling parameter fNL as a function of the maxi-
mum multipole ‘max, measured from the Q+V+W co-added map using the
cubic (bispectrum) estimator (eq. [8]). The best constraint is obtained from
‘max ¼ 265. The distribution is cumulative, so that the error bars at each
‘max are not independent.
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the bispectrum, however, this decomposition is not simple,
as the bispectrum B‘1‘2‘3 measures the mode coupling from
‘1 to ‘2 and ‘3 and vice versa. This property makes it difficult
to use different weighting schemes on different angular
scales. The first column of Table 1 shows fNL measured in

the Q, V, and W bands separately. There is no significant
band-to-band variation, or a significant detection in any
band.

Figure 2 shows the Minkowski functionals at
nside ¼ 128 (147,594 high-latitude pixels, each 280 in
diameter). The gray band shows the 68% confidence
region derived from 1000 Gaussian simulations. Table 2
shows the �2-values (eq. [12]). The data are in excellent
agreement with the Gaussian simulations at all resolu-
tions. The individual Minkowski functionals are highly
correlated with each other (e.g., Shandarin et al. 2002).
We account for this using a simultaneous analysis of all
three Minkowski functionals, replacing the 15 element
vectors Fi

WMAP;� and hFi
sim;�i in equation (12) (the index i

TABLE 1

The Nonlinear Coupling Parameter, the Reduced

Point-Source Angular Bispectrum, and the

Point-Source Angular Power Spectrum

(Positive Definite) by Frequency Band

Band fNL

bsrc
(10�5 lK3 sr2)

csrc
(10�3 lK2 sr)

Q.......................... 51� 61 9.5� 4.4 15� 6

V.......................... 42� 63 1.1� 1.6 4.5� 4

W......................... 37� 75 0.28� 1.3 . . .

Q+V+W ............. 38� 48 0.94� 0.86 . . .

Notes.—The error bars are 68%. The tabulated values are for the
Kp0mask, while theKp2mask gives similar results.

Fig. 2.—Left panels show the Minkowski functionals for WMAP data
( filled circles) at nside ¼ 128 (280 pixels). The gray band shows the 68% con-
fidence interval for the GaussianMonte Carlo simulations. The right panels
show the residuals between the mean of the Gaussian simulations and the
WMAP data. The WMAP data are in excellent agreement with the
Gaussian simulations.

TABLE 2

�2
for Minkowski Functionals

nside

Pixel

Diameter

(deg)

Minkowski

Functional

WMAP

�2 f (>WMAP)a

256 ............ 0.2 Genus 15.9 0.57

128 ............ 0.5 Genus 10.7 0.79

64.............. 0.9 Genus 15.7 0.44

32.............. 1.8 Genus 18.7 0.26

16.............. 3.7 Genus 16.8 0.22

256 ............ 0.2 Contour 9.9 0.93

128 ............ 0.5 Contour 9.9 0.83

64.............. 0.9 Contour 14.6 0.54

32.............. 1.8 Contour 12.8 0.58

16.............. 3.7 Contour 11.9 0.67

256 ............ 0.2 Area 17.4 0.50

128 ............ 0.5 Area 10.9 0.74

64.............. 0.9 Area 11.9 0.66

32.............. 1.8 Area 21.9 0.12

16.............. 3.7 Area 15.7 0.33

Notes.—�2 computed using Gaussian simulations. There are 15
degrees of freedom.

a Fraction of simulations with �2 greater than the value from the
WMAP data.

Fig. 3.—Limits to fNL from �2 fit of the WMAP data to the non-
Gaussian models (eq. [1]). The fit is a joint analysis of the three Minkowski
functionals at 280 pixel resolution. There are 44 degrees of freedom. The
Minkowski functionals show no evidence for non-Gaussian signals in the
WMAP data.
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denotes each Minkowski functional) with 45 element vec-
tors F� ¼ ½F1;F2;F 3	� ¼ ½area, contour, genus	� and using
the covariance of this larger vector as derived from the
simulations. We compute �2 for values fNL ¼ 0 to 1000,
comparing the results from WMAP to similar �2-values
computed from non-Gaussian realizations. Figure 3
shows the result. We find a best-fit value fNL ¼ 22� 81
(68%), with a 95% confidence upper limit fNL < 139, in
agreement with the cubic statistic.

2.5. Implications of theWMAPLimits on fNL

2.5.1. Inflation

The limits on fNL are consistent with simple inflation
models: models based on a slowly rolling scalar field
typically give fNLj j � 10�2 10�1 (Salopek & Bond 1990,
1991; Falk et al. 1993; Gangui et al. 1994; Acquaviva et
al. 2002; Maldacena 2002), 3 to 4 orders of magnitude
below our limits. Measuring fNL at this level is difficult
because of the cosmic variance. There are alternative
models which allow larger amplitudes of non-
Gaussianity in the primordial fluctuations, which we
explore below.

A large fNL may be produced when the following condi-
tion is met. Suppose that � is given by � ¼ �x, where
� is a transfer function that converts x to � and
x ¼ xð1Þ þ xð2Þ þ Oðxð3ÞÞ denotes a fluctuating field
expanded into a series of xðiÞ ¼ fixði�1Þxð1Þ with f1 ¼ 1.
Then, fNL ¼ ��1f2. Inflation predicts the amplitude of xðiÞ

and the form of fi, which eventually depends upon the scalar
field potential; thus, xðiÞ would be of order ðH=mplanckÞi (H
is the Hubble parameter during inflation) for H < mplanck,
and the leading-order term is �H=mplanck � 10�5�. In this
way � ‘‘ suppresses ’’ the amplitude of fluctuations, allowing
a larger amplitude forH=mplanck � 10�5��1. What does this
mean? If H � 10�2mplanck, then � � 10�3 and fNL � 103f2.
The amplitude of fNL is thus large enough to detect for
f2e0:1. This suppression factor, �, seems necessary for one
to obtain a large fNL in the context of the slow-roll inflation.
The suppression also helps us to avoid a ‘‘ fine-tuning prob-
lem ’’ of inflation models, as it allows H=mplanck to be of
order slightly less than unity (which one might think
natural) rather than forcing it to be of order 10�5.

Curvatons proposed by Lyth &Wands (2002) provide an
example of a suppression mechanism. A curvaton is a scalar
field, �, having mass, m�, that develops fluctuations, ��,
during inflation with its energy density, 	� ’ Vð�Þ, tiny
compared to that of the inflation field that drives inflation.
After inflation ends, radiation is produced as the inflation
decays, generating entropy perturbations between � and
radiation, S�
 ¼ �	�= 	� � 3

4 �	
=	
 . When H decreases to
become comparable tom�, oscillations of � at the bottom of
Vð�Þ give 	� ’ m2

��2. In the limit of ‘‘ cold inflation ’’ for
which �	
=	
 is nearly zero, one finds S�
 ’ �	�=	� ’
2��=�þ ð��=�Þ2. As long as � survives after the production
of S�
, the curvature perturbation � is generated as � ¼
1
2 �S�
 ’ �½xð1Þ þ 1

2 ðxð1ÞÞ
2	, where xð1Þ ¼ ��=� (i.e., f2 ¼ 1

2).
The generation of� continues until � decays, and� is essen-
tially determined by a ratio of 	� to the total energy density,
��, at the time of the decay. Lyth et al. (2002) numerically
evolved perturbations to find � ’ 2

5�� at the time of the
decay. The smaller the curvaton energy density is, the less
efficient the S�
 to � conversion becomes (or the more effi-
cient the suppression becomes). The small �� thus leads to

the large fNL, as fNL ¼ ��1f2 ’ 5
4�

�1
� (i.e., fNL is always posi-

tive in this model). Assuming the curvaton exists and is
entirely responsible for the observed CMB anisotropy, our
limits on fNL imply �� > 9� 10�3 at the time of the curva-
ton decay. (However, the lower limit to �� does not mean
that we need the curvatons. This constraint makes sense
only when the curvaton exists and is entirely producing the
observed fluctuations.)

Features in an inflation potential can generate significant
non-Gaussian fluctuations (Kofman et al. 1991; Wang &
Kamionkowski 2000), and it is expected that measurements
of non-Gaussianity can place constrains on a class of the
feature models. In Appendix C, we calculate the angular
bispectrum from a sudden step in a potential of the form in
equation (C2). This step is motivated by a class of super-
gravity models yielding the steps as a consequence of succes-
sive spontaneous symmetry-breaking phase transitions of
many fields coupled to the inflaton (Adams, Ross, & Sarkar
1997; Adams, Cresswell, & Easther 2001). One step generates
two distinct regions in ‘ space where fNLj j is very large: a pos-
itive fNL is predicted at ‘ < ‘f , while a negative fNL at ‘ > ‘f ,
where ‘f is the projected location of the step. Our calculations
suggest that the two regions are separated in ‘ by less than a
factor of 2, and one cannot resolve themwithout knowing ‘f .
The average of many ‘ modes further smears out the signals.
The averaged fNL thus nearly cancels out to give only small
signals, being hidden in our constraints in Figure 1. Peiris
et al. (2003) argue that some sharp features in the WMAP
angular power spectrum producing large �2-values may arise
from features in the inflation potential. If this is true, then
one may be able to see non-Gaussian signals associated with
the features by measuring the bispectrum at the scales of the
sharp features of the power spectrum.

2.5.2. Massive Cluster Abundance at High Redshift

Massive halos, like clusters of galaxies at high redshift,
are such rare objects in the universe that their abundance is
sensitive to the presence of non-Gaussianity in the distribu-
tion function of primordial density fluctuations. Several
authors have pointed out the power of the halo abundance
as a tool for finding primordial non-Gaussianity (Lucchin &
Matarrese 1988; Robinson&Baker 2000;Matarrese, Verde,
& Jimenez 2000; Benson, Reichardt, & Kamionkowski
2002); however, the power of this method is extremely sensi-
tive to the accuracy of the mass determinations of halos. It
is necessary to go to redshifts of ze1 to obtain tight con-
straints on primordial non-Gaussianity, as constraints from
low and intermediate redshifts appear to be weak (Koyama,
Soda, & Taruya 1999; Robinson, Gawiser, & Silk 2000) (see
also Figs. 4 and 5). Because of the difficulty of measuring
the mass of a high-redshift cluster the current constraints
are not yet conclusive (Willick 2000). The limited number
of clusters observed at high redshift also limits the current
sensitivity. In this section, we translate our constraints on
fNL from the WMAP 1 yr CMB data into the effects on the
massive halos in the high-redshift universe, showing the
extent to which future cluster surveys would see signatures
of non-Gaussian fluctuations.

We adopt the method of Matarrese et al. (2000) to calcu-
late the dark-matter halo mass function dn=dM for a given
fNL, using the �CDM with the running spectral index model
best-fit to theWMAP data and the large-scale structure data.
This set of parameters is best suited for the calculations of the
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Fig. 4.—Limits to the effect of the primordial non-Gaussianity on the dark-matter halo mass function dn=dM as a function of z. The shaded area represents
the 95% constraint on the ratio of the non-Gaussian dn=dM to the Gaussian one.

Fig. 5.—Same as Fig. 4 but for the dark-matter halo number counts dN=dz as a function of the limitingmassMlim of a survey



cluster abundance. The parameters are in the rightmost
column of Table 8 of Spergel et al. (2003).We calculate

dn

dM
¼ 2

	m0

M dP=dMj j ; ð13Þ

where

	m0 ¼ 2:775� 1011ð�mh
2Þ M
 Mpc�3

¼ 3:7� 1010 M
 Mpc�3

is the present-daymeanmass density of the universe,PðM; zÞ
is the probability for halos of mass M to collapse at redshift
z, and dP=dM is given by

dP

dM
�

Z 1

0

�d�

2�

d�2

dM
sin �� �

�

3

dl3
dM

cos ��

� �
e��2�2=2 ; ð14Þ

where the angle h� is given by �� � ��c þ �3l3=6, and �cðzÞ is
the threshold overdensity of spherical collapse (Lacey & Cole
1993; Nakamura& Suto 1997). The variance of themass fluc-
tuations as a function of z is given by �2ðM; zÞ ¼
D2ðzÞ�2ðM; 0Þ, where DðzÞ is the growth factor of linear
density fluctuations,

�2ðM; 0Þ ¼
Z 1

0

dkk�1F 2
MðkÞD2ðkÞ ;

D2ðkÞ � ð2�2Þ�1k3PðkÞ

is the dimensionless power spectrum of the Bardeen curva-
ture perturbations, FMðkÞ � gðkÞTðkÞWðkRMÞ a filter
function, gðkÞ � 2

3 ðk=H0Þ2��1
m0 is a conversion factor from �

to density fluctuations, TðkÞ is the transfer function of linear
density perturbations, WðxÞ � 3j1ðxÞ=x the spherical top-
hat window smoothing density fields, and RM �
½3M=ð4�	m0Þ	1=3 is the spherical top-hat radius enclosing a
massM. The skewness l3ðM; zÞ ¼ D3ðzÞl3ðM; 0Þ, where

l3ðM; 0Þ ¼ 6fNL

Z 1

0

dk1
k1

FMðk1ÞD2ðk1Þ

�
Z 1

0

dk2
k2

FMðk2ÞD2ðk2Þ
Z 1

0

dlFM

� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ 2k1k2l

q
Þ ; ð15Þ

arises from the primordial non-Gaussianity. We use aMonte
Carlo integration routine called ‘‘ vegas ’’ (Press et al. 1992)
to evaluate the triple integral in equation (15). It follows from
equation (15) that a positive fNL gives a positive l3, positively
skewed density fluctuations. Also this dn=dM reduces to the
Press-Schechter form (Press & Schechter 1974) in the limit of
fNL ! 0. Although the Press-Schechter form predicts signifi-
cantly fewer massive halos thanN-body simulations (Jenkins
et al. 2001), we assume that a predicted ratio of the non-
Gaussian dn=dM to the Gaussian dn=dM is still reasonably
accurate, as the primordial non-Gaussianity does not affect
the dynamics of halo formations which causes the difference
between the Press-Schechter form of dn=dM and the N-body
simulations.

Figure 4 shows the WMAP constraints on the ratio of
non-Gaussian dn=dM to the Gaussian one, as a function of
M and z. We find that the WMAP constraint on fNL

strongly limits the amplitude of changes in dn=dM due to
the non-Gaussianity. At z ¼ 0, dn=dM is changed by no

more than 20% even for 4� 1015 M
 clusters. The number
of clusters that would be newly found at z ¼ 1 for
M < 1015 M
 should be within þ40

�10% of the value predicted
from the Gaussian theory. At z ¼ 3, however, much larger
effects are still allowed: dn=dM can be increased by up to a
factor of 2.5 for 2� 1014 M
.

Predictions for actual cluster surveys are made clearer by
computing the source number counts as a function of z,

dN

dz
� dV

dz

Z 1

Mlim

dM
dn

dM
; ð16Þ

where VðzÞ is the comoving volume per steradian, andMlim

is the limiting mass that a survey can reach. In practiceMlim

would depend on z due to, for example, the redshift dim-
ming of X-ray surface brightness; however, a constant Mlim

turns out to be a good approximation for surveys of the
Sunyaev-Zeldovich (SZ) effect (Carlstrom, Holder, & Reese
2002). Figure 5 shows the ratio for dN=dz as a function of z
and Mlim. A source-detection sensitivity of Slim ¼ 0:5 Jy
roughly corresponds to Mlim ¼ 1:4� 1014 M
 (Carlstrom
et al. 2002), for which dN=dz should follow the prediction of
the Gaussian theory out to z ’ 1 to within 10%, but dN=dz
at z ¼ 3 can be increased by up to a factor of 2. As Mlim

increases, the impact on dN=dz rapidly increases.
The SZ angular power spectrum CSZ

‘ is so sensitive to �8
that we can use CSZ

‘ to measure �8 (Komatsu & Kitayama
1999). The sensitivity arises largely from massive
(M > 1014 M
) clusters at z � 1. From this fact one might
argue that CSZ

‘ is also sensitive to the primordial non-
Gaussianity. We use a method of Komatsu & Seljak (2002)
with dn=dM replaced by equation (13) to compute CSZ

‘ for
the WMAP limits on fNL. We find that CSZ

‘ should follow
the prediction from the Gaussian theory to within 10% for
100 < ‘ < 10000. This is consistent with CSZ

‘ being primar-
ily sensitive to halos at z � 1, where the effect on dN=dz is
not too strong (see Fig. 5). Since CSZ

‘ / �7
8ð�bhÞ2 (Komatsu

& Seljak 2002), �8 can be determined from CSZ
‘ to within 2%

accuracy at a fixed �bh using the Gaussian theory. The cur-
rent theoretical uncertainty in the predictions of CSZ

‘ is a
factor of 2 in CSZ

‘ (10% in �8), still much larger than the
effect of the non-Gaussianity.

3. LIMITS TO RESIDUAL POINT SOURCES

3.1. Point-Source Angular Power Spectrum and Bispectrum

Radio point sources distributed across the sky generate
non-Gaussian signals, giving a positive bispectrum, bsrc
(Komatsu & Spergel 2001). In addition, the point sources
contribute significantly to the angular spectrum on small
angular scales (Tegmark & Efstathiou 1996), contaminating
the cosmological angular power spectrum. It is thus impor-
tant to understand howmuch of the measured angular power
spectrum is due to sources.We constrain the source contribu-
tion to the angular power spectrum, csrc, by measuring bsrc.
Komatsu & Spergel (2001) have shown that WMAP can
detect bsrc even after subtracting all (bright) sources detected
in the sky maps. Fortunately, there is no degeneracy between
fNL and bsrc, as shown later in Appendix A.

In this section we measure the amplitude of non-
Gaussianity from ‘‘ residual ’’ point sources that are fainter
than a certain flux threshold, Sc, and left unmasked in the
sky maps. The bispectrum bsrc is related to the number of
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sources brighter than Sc per solid angleNð> ScÞ:

bsrcðScÞ ¼
Z Sc

0

dS
dN

dS
½gð�ÞS	3

¼�Nð> ScÞ½gð�ÞSc	3

þ 3

Z Sc

0

dS

S
Nð> SÞ½gð�ÞS	3 ; ð17Þ

where gð�Þ is a conversion factor from Jy sr�1 to lK which
depends on observing frequency � as

gð�Þ ¼ ð24:76 Jy lK�1 sr�1Þ�1½ðsinh x=2Þ=x2	2 ;
x � h�=kBT0 ’ �=ð56:78 GHzÞ

for T0 ¼ 2:725 K (Mather et al. 1999), and dN=dS is the dif-
ferential source count per solid angle. The residual point
sources also contribute to the point-source power spectrum
csrc as

csrcðScÞ ¼
Z Sc

0

dS
dN

dS
½gð�ÞS	2

¼�Nð> ScÞ½gð�ÞSc	2

þ 2

Z Sc

0

dS

S
Nð> SÞ½gð�ÞS	2 : ð18Þ

By combining equation (17) and (18) we find a relation
between bsrc and csrc,

csrcðScÞ ¼ bsrcðScÞ½gð�ÞSc	�1 þ
Z Sc

0

dS

S
bsrcðSÞ½gð�ÞS	�1 :

ð19Þ

We can use this equation combined with the measured bsrc as
a function of Sc to directly determine csrc as a function of Sc,
without relying on any extrapolations. When the source
counts obey a power law like dN=dS / S�, one finds
bsrcðSÞ / S4þ�; thus, brighter sources contribute more to the
integral in equation (19) than fainter ones as long as � > �3,
which is the case for fluxes of interest. Bennett et al. (2003a)
have found � ¼ �2:6� 0:2 for S ¼ 2 10 Jy in the Q band.
Below 1 Jy, � becomes even flatter (Toffolatti et al. 1998),
implying that one does not have to go down to the very faint
end to obtain reasonable estimates of the integral. In practice,
we use equation (17) with Nð> SÞ of the Toffolatti et al.
(1998, hereafter T98) model at 44 GHz to compute
bsrcðS < 0:5 JyÞ, inserting it into the integral to avoidmissing
faint sources and underestimating the integral.

3.2. Measurement of the Point-Source Angular Bispectrum

The reduced point-source angular bispectrum, bsrc, is
measured by a cubic statistic for point sources (Komatsu
et al. 2003),

Sps ¼ m�1
3

Z
d2n̂n

4�
D3ðn̂nÞ ; ð20Þ

where the filtered mapDðn̂nÞ is given by

Dðn̂nÞ �
X‘max

‘¼2

X‘

m¼�‘

b‘
~CC‘

a‘mY‘mðn̂nÞ : ð21Þ

This statistic is even quicker (�100 times) to compute than

Sprim (eq. [7]), as it involves only one integral over n̂n and
only one filtered map. This statistic also retains the same
sensitivity to the point-source non-Gaussianity as the full
bispectrum analysis. The cubic statistic Sps gives bsrc as

bsrc ’
3

2�

X‘max

‘1�‘2�‘3

ðBps
‘1‘2‘3

Þ2

C‘1C‘2C‘3

" #�1

Sps ; ð22Þ

where B
ps
‘1‘2‘3

is the point-source bispectrum for bsrc ¼ 1
(Komatsu & Spergel 2001) multiplied by b‘1b‘2b‘3 . While the
uniform pixel-weighting outside the Galactic cut was used
for fNL, we use hereMðn̂nÞ ¼ ½�2

CMB þNðn̂nÞ	�1 where

�2
CMB ¼ ð4�Þ�1

X
‘

ð2‘þ 1ÞC‘b
2
‘

is the variance of CMB aniostropy and Nðn̂nÞ is the variance
of noise per pixel which varies across the sky. This weighting
scheme is nearly optimal for measuring bsrc as the signal
comes from smaller angular scales where noise dominates.
The factor of �2

CMB approximately takes into account the
nonzero contribution to the variance from CMB aniso-
tropy. This weight reduces uncertainties of bsrc by 17%,
23%, and 31% in the Q, V, and W bands, respectively, com-
pared to the uniform weighting. We use the highest resolu-
tion level, nside ¼ 512, and integrate equation (22) up to
‘max ¼ 1024. In Appendix B, it is shown that this estimator
is optimal and unbiased as long as very bright sources,
which have contributions to ~CC‘ too large to ignore, are
masked. We cannot include csrc in the filter, as it is what we
are trying to measure using bsrc.

The filled circles in the left panels of Figure 6 represent
bsrc measured in the Q (top panel) and V (bottom panel)
bands. We have used source masks for various flux cuts, Sc,
defined at 4.85 GHz to make these measurements. (The
masks are made from the GB6+PMN 5 GHz source
catalog.)

We find that bsrc increases as Sc: the brighter the sources
unmasked, the more non-Gaussianity is detected. On the
other hand, one canmake predictions for bsrc using equation
(17) for a given Nð> SÞ. Comparing the measured values of
bsrc with the predicted values from Nð> SÞ of T98 (dashed
lines) at 44 GHz, one finds that the measured values are
smaller than the predicted values by a factor of 0.65. The
solid lines show the predictions multiplied by 0.65. Both
errors in the T98 predictions and a nonflat energy spectrum
of sources easily cause this factor. (If sources have a nonflat
spectrum like S / ��, where � 6¼ 0, then Sc at the Q or V
band is different from that at 4.85 GHz.) Bennett et al.
(2003a) find that the majority of the radio sources detected
in the Q band have a flat spectrum, � ¼ 0:0� 0:2. Our value
for the correction factor matches well the one obtained from
the WMAP source counts for 2–10 Jy in the Q band
(Bennett et al. 2003a).

Equation (18) combined with the measured bsrc is used to
estimate the point-source angular power spectrum csrc. The
right panels of Figure 6 show the estimated csrc as filled
circles. These estimates agree well with predictions from
equation (18) with Nð> SÞ of T98 multiplied by a factor
of 0.65 (solid lines). For Sc ¼ 1 Jy at the Q band,
ĉcsrc ¼ ð19� 5Þ � 10�3 lK2 sr and matches well the value
estimated from the WMAP source counts at the same flux
threshold (Bennett et al. 2003a), which corresponds to the
solid lines in the figure. At V band, ĉcsrc ¼ ð5� 4Þ�
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10�3 lK2 sr. Here the hat denotes that these values do not
represent csrc for the standard source mask used byHinshaw
et al. (2003b) for estimating the cosmological angular power
spectrum. Since the standard source mask is made of several
source catalogs with different selection thresholds, it is diffi-
cult to clearly identify a mask flux cut. We give the standard
mask an ‘‘ effective ’’ flux cut threshold at 4.85 GHz by com-
paring bsrc measured from the standard source mask (Fig. 6,
shaded areas; see the second column of Table 1 for actual
values) with those from the GB6+PMN masks defined at
4.85 GHz. The measurements agree when Sc ’ 0:75 Jy in
the Q band. Using this effective threshold, one expects csrc
for the standard source mask as csrc ¼ ð15� 6Þ�
10�3 lK2 sr in the Q band. This value agrees with the excess
power seen on small angular scales, ð15:5� 1:7Þ�
10�3 lK2 sr (Hinshaw et al. 2003b), as well as the value
extrapolated from theWMAP source counts in the Q band,
ð15:0� 1:4Þ � 10�3 lK2 sr (Bennett et al. 2003a). In the V
band, csrc ¼ ð4:5� 4Þ � 10�3 lK2 sr.

The source number counts, angular power spectrum, and
bispectrum measure the first-, second-, and third-order
moments of dN=dS, respectively. The good agreement
among these three different estimates of csrc indicates the
validity of the estimate of the effects of the residual point
sources in the Q band. There is no visible contribution to
the angular power spectrum from the sources in the V and
W bands. We conclude that our understanding of the
amplitude of the residual point sources is satisfactory for

the analysis of the angular power spectrum not to be
contaminated by the sources.

4. CONCLUSIONS

We use cubic (bispectrum) statistics and the Minkowski
functionals to measure non-Gaussian fluctuations in the
WMAP 1 yr sky maps. The cubic statistic (eq. [7]) and the
Minkowski functionals place limits on the nonlinear
coupling parameter fNL, which characterizes the amplitude
of a quadratic term in the Bardeen curvature perturbations
(eq. [1]). It is important to remove the best-fit foreground
templates from the WMAP maps in order to reduce the
non-Gaussian Galactic foreground emission. The cubic
statistic measures phase correlations of temperature fluctua-
tions to find the best estimate of fNL from the foreground-
removed, weighted average of Q+V+W maps as fNL ¼
38� 48 (68%) and�58 < fNL < 134 (95%). TheMinkowski
functions measure morphological structures to find
fNL ¼ 22� 81 (68%) and fNL < 139 (95%), in good agree-
ment with the cubic statistic. These two completely different
statistics give consistent results, validating the robustness of
our limits. Our limits are 20–30 times better than the pre-
vious ones (Komatsu et al. 2002; Santos et al. 2002; Cayón
et al. 2003) and constrain the relative contribution from the
nonlinear term to the rms amplitude of � to be smaller than
2� 10�5 (95%), much smaller than the limits on systematic
errors in the WMAP observations. This validates that the

Fig. 6.—Point-source angular bispectrum bsrc and power spectrum csrc. The left panels show bsrc in the Q (top panel) and V bands (bottom panel). The
shaded areas showmeasurements from theWMAP sky maps with the standard source cut, while the filled circles show those with flux thresholds Sc defined at
4.85 GHz. The dashed lines show predictions from eq. (17) withNð> SÞmodeled by Toffolatti et al. (1998), while the solid lines are those multiplied by 0.65 to
match theWMAPmeasurements. The right panels show csrc. The filled circles are computed from themeasured bsrc substituted into eq. (19). The lines are from
eq. (18). The error bars are not independent, because the distribution is cumulative.
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angular power spectrum can fully characterize statistical
properties of theWMAP CMB sky maps. We conclude that
the WMAP 1 yr data do not show evidence for significant
primordial non-Gaussianity of the form in equation (1).
Our limits are consistent with predictions from inflation
models based upon a slowly rolling scalar field,
fNLj j ¼ 10�2 10�1. The span of all non-Gaussian models,
however, is large, and there are models which cannot be
parameterized by equation (1) (e.g., Bernardeau & Uzan
2002b, 2002a). Other forms such as multifield inflation
models and topological defects will be tested in the future.

The non-Gaussianity also affects the dark-matter halo
mass function dn=dM, since the massive halos at high red-
shift are sensitive to changes in the tail of the distribution
function of density fluctuations. Our limits show that the
number of clusters that would be newly found at z ¼ 1 for
M < 1015 M
 should be within þ40

�10% of the value predicted
from the Gaussian theory. At higher redshifts, however,
much larger effects are still allowed. The number counts
dN=dz at z ¼ 3 with the limiting mass of 3� 1014 M
 can
be reduced by a factor of 2, or increased by more than a fac-
tor of 3. Since the SZ angular power spectrum is primarily
sensitive to massive halos at z � 1, where the impact of non-
Gaussianity is constrained to be within 10%, a measurement
of �8 from the SZ angular power spectrum is changed by no
more than 2%. Our results on dn=dM derived in this paper
should be taken as the current observational limits to non-
Gaussian effects on dn=dM. In other words, this is the
uncertainty that we currently have in dn=dM when the
assumption of Gaussian fluctuations is relaxed.

The limits on fNL will improve as the WMAP satellite
acquires more data. Monte Carlo simulations show that the
4 yr data will achieve 95% limit of 80. This value will further
improve with a more proper pixel-weighting function that
becomes the uniform weighting in the signal-dominated
regime (large angular scales) and becomes the N�1 weight-
ing in the noise-dominated regime (small angular scales).

There is little hope of testing the expected levels of
fNL ¼ 10�2 10�1 from simple inflation models, but some
nonstandard models can be excluded.

We have detected non-Gaussian signals arising from the
residual radio point sources left unmasked at the Q band,

characterized by the reduced point-source angular bispec-
trum bsrc ¼ ð9:5� 4:4Þ � 10�5 lK3 sr2, which, in turn, gives
the point-source angular power spectrum csrc ¼ ð15� 6Þ�
10�3 lK2 sr. This value agrees well with those from the
source number counts (Bennett et al. 2003a) and the angular
power spectrum analysis (Hinshaw et al. 2003b), giving us
confidence on our understanding of the amplitude of the
residual point sources. Since bsrc directly measures csrc with-
out relying on extrapolations, any CMB experiments that
suffer from the point-source contamination should use bsrc
to quantify csrc to obtain an improved estimate of the CMB
angular power spectrum for the cosmological-parameter
determinations.

Hinshaw et al. (2003b) found that the best-fit power spec-
trum to the WMAP temperature data has a relatively large
�2-value, corresponding to a chance probability of 3%.
While still acceptable fit, there may be missing components
in the error propagations over the Fisher matrix. Since the
Fisher matrix is the four-point function of the temperature
fluctuations, those missing components (e.g., gravitational
lensing effects) may not be apparent in the bispectrum, the
three-point function. The point-source non-Gaussianity
contributes to the Fisher matrix by only a negligible
amount, as it is dominated by the Gaussian instrumental
noise. Non-Gaussianity in the instrumental noise due to the
1=f striping may have additional contributions to the Fisher
matrix; however, since the Minkowski functionals, which
are sensitive to higher order moments of temperature fluctu-
ations and instrumental noise, do not find significant non-
Gaussian signals, non-Gaussianity in the instrumental noise
is constrained to be very small.
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APPENDIX A

SIMULATING COSMIC MICROWAVE BACKGROUND SKY MAPS FROM PRIMORDIAL FLUCTUATIONS

In this Appendix, we describe how to simulate CMB sky maps from generic primordial fluctuations. As a specific example,
we choose to use the primordial Bardeen curvature perturbations�ðxÞ, which generate CMB anisotropy at a given position of
the sky DTðn̂nÞ as (Komatsu et al. 2003)

DTðn̂nÞ ¼ T0

X
‘m

Y‘mðn̂nÞ
Z

r2dr�‘mðrÞ�‘ðrÞ ; ðA1Þ

where �lmðrÞ is the harmonic transform of �ðxÞ at a given comoving distance r � xj j, �‘mðrÞ �
R
d2n̂n�ðr; n̂nÞY�

‘mðn̂nÞ, and �‘ðrÞ
was defined previously (eq. [5]). We can instead use isocurvature fluctuations or a mixture of the two. Equation (A1) suggests
that �‘ðrÞ is a transfer function projecting �ðxÞ onto DTðn̂nÞ through the integral over the line of sight. Since �‘ðrÞ is just a
mathematical function, we precompute and store it for a given cosmology, reducing the computational time of a batch of
simulations. We can thus use or extend equation (A1) to compute DTðn̂nÞ for generic primordial fluctuations.

We simulate CMB sky maps using a non-Gaussian model of the form in equation (1) as follows. (1) We generate ~��LðkÞ as a
Gaussian random field in Fourier space for a given initial power spectrum PðkÞ and transform it back to real space to obtain
�LðxÞ. (2) We transform from Cartesian to spherical coordinates to obtain �Lðr; n̂nÞ, compute its harmonic coefficients �‘mðrÞ,
and obtain a temperature map of the Gaussian part DT�ðn̂nÞ by integrating equation (A1). (3) We repeat this procedure for
�2

LðxÞ � V�1
x

R
d3x�2

LðxÞ to obtain a temperature map of the non-Gaussian part DT�2ðn̂nÞ. (4) By combining these two
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temperature maps, we obtain non-Gaussian sky maps for any values of fNL,

DTðn̂nÞ ¼ DT�ðn̂nÞ þ fNLDT�2ðn̂nÞ : ðA2Þ

We do not need to run many simulations individually for different values of fNL, but run only twice to obtain DT�ðn̂nÞ and
DT�2ðn̂nÞ for a given initial random number seed. Also, we can combine DT�ðn̂nÞ for one seed withDT�2ðn̂nÞ for the other to make
realizations for a particular kind of two-field inflation models. We can apply the same procedure to isocurvature fluctuations
with or without�ðxÞ correlations.

We need the simulation box of the size of the present-day cosmic horizon size Lbox ¼ 2c
0, where 
0 is the present-day
conformal time. For example, Lbox � 20 h�1 Gpc is needed for a flat universe with �m ¼ 0:3, whereas we need spatial
resolution of at least �20 h�1 Mpc to resolve the last-scattering surface accurately. From this constraint the number of grid
points is at leastNgrid ¼ 10243, and the required amount of physical memory to store �ðxÞ is at least 4.3 GB. Moreover, when
we simulate a sky map having 786 432 pixels at nside ¼ 256, we need 1.6 GB to store a field in spherical coordinates �ðr; n̂nÞ,
where the number of r evaluated for Ngrid ¼ 10243 is 512. Since our algorithm for transforming Cartesian into spherical
coordinates requires another 1.6 GB, in total we need at least 7.5 GB of physical memory to simulate one sky map.

We have generated 300 realizations of non-Gaussian sky maps with Ngrid ¼ 10243 and nside ¼ 256. It takes 3 hours on one
processor of SGI Origin 300 to simulate DT�ðn̂nÞ and DT�2ðn̂nÞ. We have used six processors to simulate 300 maps in one week.
Figure 7 shows the one-point probability density function (PDF) of temperature fluctuations measured from simulated
non-Gaussian maps (without noise and beam smearing) compared with the rms scatter of Gaussian realizations. We find it
difficult for the PDF alone to distinguish non-Gaussian maps of fNLj j < 500 from Gaussian maps, whereas the cubic statistic
Sprim (eq. [8]) can easily detect fNL ¼ 100 in the same data sets.

We measure fNL on the simulated maps using Sprim to see if it can accurately recover fNL. Similar tests show the Minkowski
functionals to be unbiased and able to discriminate different fNL values at levels consistent with the quoted uncertainties. We
also measure the point-source angular bispectrum bsrc to see if it returns null values as the simulations do not contain point
sources. We have included noise properties and window functions in the simulations. Figure 8 shows histograms of fNL and
bsrc measured from 300 simulated maps of fNL ¼ 100 (solid lines) and fNL ¼ 0 (dashed lines). Our statistics find correct values
for fNL and find null values for bsrc; thus, our statistics are unbiased, and fNL and bsrc are orthogonal to each other as pointed
out by Komatsu & Spergel (2001).

Fig. 7.—One-point PDF of temperature fluctuations measured from simulated non-Gaussian maps (noise and beam smearing are not included). From the
top left to the bottom right panel the solid lines show the PDF for fNL ¼ 100, 500, 1000, and 3000, while the dashed lines enclose the rms scatter of Gaussian
realizations (i.e., fNL ¼ 0).
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APPENDIX B

POWER OF THE POINT-SOURCE BISPECTRUM

In this Appendix, we test our estimator for bsrc and csrc using simulated Q-band maps of point sources, CMB, and detector
noise. The 44 GHz source count model of T98 was used to generate the source populations. The total source count in each
realization was fixed to 9043, the number predicted by T98 to lie between Smin ¼ 0:1 Jy and Smax ¼ 10 Jy. By generating
uniform deviates u 2 ð0; 1Þ and transforming to flux S via

u ¼ Nð> SminÞ �Nð> SÞ
Nð> SminÞ �Nð> SmaxÞ

; ðB1Þ

we obtain the desired spectrum. The sources were distributed evenly over the sky and convolved with a Gaussian profile
approximating the Q-band beam. Flux was converted to peak brightness using the values in Table 8 of Page et al. (2003b). The
CMB and noise realizations were not varied between realizations. The goal in this Appendix is to prove that our estimator for
bsrc works well and is very powerful in estimating csrc.

The left panel of Figure 9 compares the measured bsrc from simulated maps with the expectations of the simulations. Black,
dark gray, and light gray indicate three different realizations of point sources. The measurements agree well with the
expectations at Sc < 1:75 Jy. They, however, show significant scatter at Sc > 1:75 Jy, because our filter for computing bsrc (eq.
[21]) does not include contribution from csrc to ~CC‘, making the filter less optimal in the limit of ‘‘ too many ’’ unmasked point
sources. We can see from the figure that csrc at Sc > 2 Jy is comparable to or larger than the noise power spectrum for the Q
band, 54� 10�3 lK2 sr.

Fortunately, this is not a problem in practice, as we can detect and mask those bright sources which contribute significantly
to ~CC‘. The residual point sources that we cannot detect (therefore we want to quantify using bsrc) should be hidden in the noise
having only a small contribution to ~CC‘. In this faint-source regime bsrc works well in measuring the amplitude of residual point
sources, offering a promising way for estimating csrc. The right panel of Figure 9 compares csrc estimated from bsrc (eq. [17])
with the expectations. The agreement is good for Sc < 1:75 Jy, proving that estimates of csrc from bsrc are unbiased and
powerful. Since bsrc measures csrc directly, we can use it for any CMB experiments that suffer from the effect of residual point
sources. While we have considered the bispectrum only here, the fourth-order moment may also be used to increase our
sensitivity to the point-source non-Gaussianity (Pierpaoli 2003).

Fig. 8.—Distribution of the nonlinear coupling parameter fNL (left panel) and the point-source bispectrum bsrc (right panel ) measured from 300 simulated
realizations of non-Gaussian maps for fNL ¼ 100 (solid line) and fNL ¼ 0 (dashed line). The simulations include noise properties and window functions of the
WMAP 1 yr data but do not include point sources.
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APPENDIX C

THE ANGULAR BISPECTRUM FROM A POTENTIAL STEP

A scalar-field potential Vð�Þ with features can generate large non-Gaussian fluctuations in CMB by breaking the slow-roll
conditions at the location of the features (Kofman et al. 1991; Wang & Kamionkowski 2000). We estimate the impact of the
features by using a scale-dependent fNL,

fNLð�Þ ¼ � 5

24�G

@2 lnH

@�2

� �
; ðC1Þ

which is calculated from a nonlinear transformation between the curvature perturbations in the comoving gauge and the
scalar-field fluctuations in the spatially flat gauge (Salopek & Bond 1990, 1991). This expression does not assume the slow-roll
conditions. Although this expression does not include all effects contributing to fNL during inflation driven by a single field
(Maldacena 2002), we assume that an order-of-magnitude estimate can still be obtained.

A sharp feature in Vð�Þ at �f produces a significantly scale-dependent fNLð�Þ near �f through the derivatives of H in
equation (C1). We illustrate the effects of the steps using the potential features proposed by Adams et al. (2001),

Vð�Þ ¼ 1

2
m2

��
2 1þ c tanh

�� �f

d

� �� 	
; ðC2Þ

which has a step inVð�Þ at �f with the height c and the slope d�1. Adams et al. (1997) show that the steps are created by a class
of supergravity models in which symmetry-breaking phase transitions of many fields in flat directions gravitationally coupled
to � continuously generate steps inVð�Þ every 10–15 e-folds, giving a chance for a step to exist within the observable region of
Vð�Þ.

It is instructive to evaluate equation (C1) combined with equation (C2) in the slow-roll limit, @2 lnH=@�2 ’ 1
2 @

2 lnV=@�2.
For cj j5 1, one obtains

fNLð�Þ ’
5

24�G

1

�2
þ c

d2

tanh x

cosh2 x

� �
; ðC3Þ

Fig. 9.—Testing the estimator for the reduced point-source bispectrum bsrc (eq. [22]). The left panel shows bsrc measured from a simulated map including
point sources and properties of the WMAP sky map at the Q band, as a function of flux cut Sc ( filled circles). Black, dark gray, and light gray indicate three
different realizations of point sources. The solid line is the expectation from the input source number counts in the point-source simulation. The right panel
compares the power spectrum csrc estimated from bsrc with the expectation. The error bars are not independent, because the distribution is cumulative. The
behavior for Sc > 2 Jy shows the cumulative effect of sources with brightness comparable to the instrument noise (see text in Appendix B).
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where x � ð�� �f Þ=d. The first term corresponds to a standard, nearly scale-independent prediction giving 7:4� 10�3 at
� ¼ 3mplanck, while the second term reveals a significant scale dependence. The function tanh x= cosh2 x is a symmetric odd
function about x ¼ 0 with extrema of�0.385 at x ’ �0:66. The picture is the following: as � rolls down Vð�Þ from a positive
x > 0:66, � gets accelerated at x ’ 0:66, reaches constant velocity at x ¼ 0, decelerates at x ’ �0:66, and finally reaches slow
roll at x < �0:66. The ratio of the second term in equation (C3) to the first at the extrema is �0:385cð�=dÞ2. For example,
c ¼ 0:02 and �=d ¼ 300 (i.e., d ¼ 0:01mplanck) make the amplitude of the second term 700 times larger than the first, giving
fNLj j ’ 5 at the extrema. Despite the slow-roll conditions having a tendency to underestimate fNL, it is possible to obtain
fNLj j > 1. Neglecting the first term in equation (C3) and converting � for k, one obtains

fNLðkÞ ’
5c

24�Gd2
hstepðkÞ �

5c

24�Gd2

tanh xk

cosh2 xk
; ðC4Þ

where xk ’ d�1ð@�=@ ln kÞf ðk=kf � 1Þ ¼ d�1ð _��=HÞf ðk=kf � 1Þ for k � kf5 kf . The slow-roll approximation gives
xk ’ ð4�G�f dÞ�1ðk=kf � 1Þ. Finally, following the method of Komatsu & Spergel (2001), we obtain the reduced bispectrum
of a potential step model, bstep‘1‘2‘3

, as

b
step
‘1‘2‘3

¼ 2
5c

24�Gd2

� �Z 1

0

r2dr
�
�‘1ðrÞ�‘2ðrÞ�

step
‘3

ðrÞ þ ð2 permutationsÞ
�
; ðC5Þ

where �‘ðrÞ is given by equation (6), and

�
step
‘ ðrÞ � 2

�

Z
k2dkhstepðkÞgT‘ðkÞj‘ðkrÞ : ðC6Þ

The amplitude is thus proportional to c=d2: a bigger (larger c) and steeper (smaller d ) step gives a larger bispectrum. The steep-
ness affects the amplitude more, because the non-Gaussianity is generated by breaking the slow-roll conditions.

Since bstep‘1‘2‘3
linearly scales as c for a fixed d, we can fit for c by using exactly the same method as for the scale-independent

fNL, but with �‘ðrÞ in equation (3) replaced by �step
‘ ðrÞ. The exact form of the fitting parameter in the slow-roll limit is

5c=ð24�Gd2Þ. A reason for the similarity between the two models in methods for the measurement is explained as follows.
Komatsu et al. (2003) have shown that Bðn̂n; rÞ (eq. [4]) is a Wiener-filtered, reconstructed map of the primordial fluctuations
�ðn̂n; rÞ. Our cubic statistic (eq. [7]) effectively measures the skewness of the reconstructed � field, maximizing the sensitivity to
the primordial non-Gaussianity. One of the three maps comprising the cubic statistic is, however, not Bðn̂n; rÞ, but Aðn̂n; rÞ given
by equation (3). This map defines what kind of non-Gaussianity to look for, or more detailed form of the bispectrum. For the
potential step case, Astepðn̂n; rÞmade of �step

‘ ðrÞ picks up the location of the step to measure 5c=ð24�Gd2Þ near kf , while for the
form in equation (1),Aðn̂n; rÞ explores all scales on equal footing to measure the scale-independent fNL.

The distinct features in k space are often smeared out in ‘ space via the projection. This effect is estimated from equation
(C6) as follows. The function hstepðkÞ near kf is accurately approximated by hstepðkÞ ’ 0:385 sinð2xkÞ, which has a period of
Dk ¼ 4�2G�f dkf . On the other hand, the radiation transfer function gT‘ðkÞ behaves as j‘ðkr�Þ, where r� is the comoving
distance to the photon decoupling epoch, and gT‘ðkÞj‘ðkrÞ behaves as j2‘ ðkr�Þ (the integral is very small when r 6¼ r�). The
oscillation period of this part is thus Dk ¼ �=r� for kr� > ‘. A ratio of the period of hstepðkÞ to that of gT‘ðkÞj‘ðkrÞ is then
estimated as 4�G�f dr�kf ’ ð‘f =3Þðd=0:01mplanckÞð�f =3mplanckÞ, where ‘f � kf r� is the angular wave number of the location
of the step.We thus find that hstepðkÞ oscillates muchmore slowly than the rest of the integrand in equation (C6) for ‘f41.

What does it mean? It means that the results would look as if there were two distinct regions in ‘ space where fNL is
very large: a positive fNL is found at ‘ < ‘f and a negative one at ‘ > ‘f . The estimated location is
‘=‘f ’ 1� 0:66ð4�G�f dÞ ’ 1� 0:2ðd=0:01mplanckÞð�f =3mplanckÞ; thus, the positive and negative regions are separated in ‘ by
only 40%, making the detection difficult when many ‘ modes are combined to improve the signal-to-noise ratio. The two
extrema would cancel out to give only small signals. In other words, it is still possible that non-Gaussianity from a potential
step is ‘‘ hidden ’’ in our measurements shown in Figure 1. Note that the cancellation occurs because of the point symmetry of
hstepðkÞ about k ¼ kf . If the function has a knee instead of a step, then the cancellation does not occur and there would be a
single region in ‘ space where fNLj j is large (Wang &Kamionkowski 2000). Note that our estimate in this Appendix was based
upon equation (C3), which uses the slow-roll approximations. While instructive, since the slow-roll approximations break
down near the features, our estimate may not be very accurate. One needs to integrate the equation of motion of the scalar field
to evaluate equation (C1) for more accurate estimations of the effect.
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Smoot, G. F., &Wright, E. I. 1996, ApJ, 464, L5

Komatsu, E. 2001, Ph.D. thesis, TohokuUniv.
Komatsu, E., &Kitayama, T. 1999, ApJ, 526, L1
Komatsu, E., & Seljak, U. 2002,MNRAS, 336, 1256
Komatsu, E., & Spergel, D. N. 2001, Phys. Rev. D, 63, 63002
Komatsu, E., Spergel, D. N., & Wandelt, B. D. 2003, ApJ, submitted
(astro-ph/0305189)

Komatsu, E., Wandelt, B. D., Spergel, D. N., Banday, A. J., & Górski,
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