WMAP Cosmological Parameters

Model: lcdm+tens
Data: wmap9+spt+act+snls3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^9 \Delta^2_{\text{R}}$</td>
<td>$2.360^{+0.089}_{-0.088}$</td>
</tr>
<tr>
<td>$A_{\text{clustered}}$</td>
<td>< 10 (95% CL)</td>
</tr>
<tr>
<td>$A_{\text{Poisson}}^{\text{SPT}}$</td>
<td>> 17 (95% CL)</td>
</tr>
<tr>
<td>$d_A(z_{eq})$</td>
<td>14280 ± 84 Mpc</td>
</tr>
<tr>
<td>$D_v(z = 0.57)/r_s(z_d)$</td>
<td>12.99 ± 0.23</td>
</tr>
<tr>
<td>k_{eq}</td>
<td>0.00967 ± 0.00023</td>
</tr>
<tr>
<td>ℓ_*</td>
<td>$301.93^{+0.42}_{-0.41}$</td>
</tr>
<tr>
<td>n_s</td>
<td>0.973 ± 0.010</td>
</tr>
<tr>
<td>Ω_b</td>
<td>0.0437 ± 0.0016</td>
</tr>
<tr>
<td>Ω_c</td>
<td>0.214 ± 0.016</td>
</tr>
<tr>
<td>Ω_{Λ}</td>
<td>0.742 ± 0.017</td>
</tr>
<tr>
<td>$\Omega_m h^2$</td>
<td>0.1325 ± 0.0032</td>
</tr>
<tr>
<td>$r_s(z_d)$</td>
<td>153.50 ± 0.93 Mpc</td>
</tr>
<tr>
<td>$r_s(z_{eq})/D_v(z = 0.2)$</td>
<td>0.1945 ± 0.0045</td>
</tr>
<tr>
<td>$r_s(z_{eq})/D_v(z = 0.44)$</td>
<td>0.0955 ± 0.0018</td>
</tr>
<tr>
<td>$r_s(z_{eq})/D_v(z = 0.57)$</td>
<td>0.0770 ± 0.0013</td>
</tr>
<tr>
<td>$r_s(z_{eq})/D_v(z = 0.73)$</td>
<td>0.06357 ± 0.00097</td>
</tr>
<tr>
<td>R</td>
<td>1.714 ± 0.11</td>
</tr>
<tr>
<td>$\sigma_{8\Omega_m^{0.5}}$</td>
<td>0.407 ± 0.020</td>
</tr>
<tr>
<td>σ_{SNLS}</td>
<td>1.43 ± 0.11</td>
</tr>
<tr>
<td>A_{SZ}</td>
<td>< 1.0 (95% CL)</td>
</tr>
<tr>
<td>τ</td>
<td>0.086 ± 0.013</td>
</tr>
<tr>
<td>θ_*</td>
<td>0.59617 ± 0.00082 °</td>
</tr>
<tr>
<td>t_{reion}</td>
<td>473^{+65}_{-66} Myr</td>
</tr>
<tr>
<td>z_d</td>
<td>1020.02 ± 0.83</td>
</tr>
<tr>
<td>z_{rec}</td>
<td>$1088.04^{+0.68}_{-0.67}$</td>
</tr>
<tr>
<td>z_*</td>
<td>1090.82 ± 0.65</td>
</tr>
<tr>
<td>H_0</td>
<td>71.8 ± 1.6 km/s/Mpc</td>
</tr>
<tr>
<td>$A_{\text{Poisson}}^{\text{ACT}}$</td>
<td>15.0 ± 2.3</td>
</tr>
<tr>
<td>$\ell(\ell + 1)C_{220}/(2\pi)$</td>
<td>$5748 \pm 32 \mu$K2</td>
</tr>
<tr>
<td>$d_A(z_{eq})$</td>
<td>14116 ± 86 Mpc</td>
</tr>
<tr>
<td>η</td>
<td>$(6.15 \pm 0.10) \times 10^{-10}$</td>
</tr>
<tr>
<td>n_b</td>
<td>$(2.526 \pm 0.043) \times 10^{-7}$ cm$^{-3}$</td>
</tr>
<tr>
<td>n_t</td>
<td>> -0.023 (95% CL)</td>
</tr>
<tr>
<td>$\Omega_b h^2$</td>
<td>0.0225 ± 0.00038</td>
</tr>
<tr>
<td>$\Omega_c h^2$</td>
<td>0.1100 ± 0.0033</td>
</tr>
<tr>
<td>$\Omega_{\Lambda} h^2$</td>
<td>0.258 ± 0.017</td>
</tr>
<tr>
<td>$\Omega_m h^2$</td>
<td>0.1325 ± 0.0032</td>
</tr>
<tr>
<td>$r_s(z_d)/D_v(z = 0.106)$</td>
<td>0.3570 ± 0.0089</td>
</tr>
<tr>
<td>$r_s(z_d)/D_v(z = 0.35)$</td>
<td>0.1165 ± 0.0024</td>
</tr>
<tr>
<td>$r_s(z_d)/D_v(z = 0.54)$</td>
<td>0.0805 ± 0.0014</td>
</tr>
<tr>
<td>$r_s(z_d)/D_v(z = 0.6)$</td>
<td>$0.0739^{+0.0012}_{-0.0013}$</td>
</tr>
<tr>
<td>$r_s(z_d)/D_v(z = 0.73)$</td>
<td>$146.88^{+0.85}_{-0.86}$</td>
</tr>
<tr>
<td>σ_8</td>
<td>4.01 ± 0.017</td>
</tr>
<tr>
<td>$\sigma_{8\Omega_m^{0.6}}$</td>
<td>0.355 ± 0.020</td>
</tr>
<tr>
<td>β_{SNLS}</td>
<td>3.26 ± 0.11</td>
</tr>
<tr>
<td>t_0</td>
<td>13.694 ± 0.077 Gyr</td>
</tr>
<tr>
<td>θ_*</td>
<td>0.010405 ± 0.000014</td>
</tr>
<tr>
<td>t_{rec}</td>
<td>286.0 ± 1.8</td>
</tr>
<tr>
<td>t_*</td>
<td>379817^{+3064}_{-3077} yr</td>
</tr>
<tr>
<td>z_{eq}</td>
<td>3172 ± 76</td>
</tr>
<tr>
<td>z_{reion}</td>
<td>10.4 ± 1.1</td>
</tr>
</tbody>
</table>